Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings

Intelligent Engineering Systems through Artificial Neural Networks, Volume 16

Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
Anna L. Buczak
Anna L. Buczak
Search for other works by this author on:
David L. Enke
David L. Enke
Search for other works by this author on:
Mark Embrechts
Mark Embrechts
Search for other works by this author on:
Okan Ersoy
Okan Ersoy
Search for other works by this author on:
ISBN-10:
0791802566
No. of Pages:
1000
Publisher:
ASME Press
Publication date:
2006

Applying fuzzy ARTMAP to complex real-world problems such as handwritten character recognition may lead to poor performance and a convergence problem whenever the training set contains very similar or identical patterns that belong to different classes. To circumvent this problem, some alternatives to the network's original match tracking (MT) process have been proposed in literature, such as using negative MT, and removing MT altogether. In this paper, the impact on fuzzy ARTMAP performance of different MT strategies is assessed using different patterns recognition problems — two types of synthetic data as well as a real-world handwritten digit data. Fuzzy ARTMAP...

ABSTRACT
I. Introduction
II. Match Tracking Strategies for the Fuzzy ARTMAP
III. Experimental Methodology
IV. Results on Synthetic Data
V. Results on NIST SD19
VI. Conclusion
Acknowledgement
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal