Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings
Intelligent Engineering Systems through Artificial Neural Networks, Volume 16
Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
Anna L. Buczak
Anna L. Buczak
Search for other works by this author on:
David L. Enke
David L. Enke
Search for other works by this author on:
Mark Embrechts
Mark Embrechts
Search for other works by this author on:
Okan Ersoy
Okan Ersoy
Search for other works by this author on:
ISBN-10:
0791802566
No. of Pages:
1000
Publisher:
ASME Press
Publication date:
2006

The fatigue behavior of asphalt concrete is very complicated that a comprehensive fundamental theoretical model is not available. Therefore, a reliable empirical method for predicting fatigue life based on experimental data remains a desirable approach. However, the complexity of the fatigue process and the noise associated with the fatigue test results make even the traditional empirical methods, such as regression analysis, handicapped in producing a sufficiently accurate model. Artificial neural networks (ANNs) have the ability to derive considerable complex relationships and associations from experimental data while filtering out the effect of noisy data. In this study, the potential use of ANNs for fatigue life prediction was explored and the comparisons between ANN-based model predictions and predictions via multi-linear as well as other published models showed that ANN-based models provide much more accurate predictions.

Abstract
Introduction
ANN Model Development
ANN-Based Excel Fatigue Life Prediction Code
Comparison of ANN-Based Models with Published Models
Concluding Remarks
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal