Skip to Main Content
ASME Press Select Proceedings

International Conference on Mechanical and Electrical Technology, 3rd, (ICMET-China 2011), Volumes 1–3

Yi Xie
Yi Xie
Search for other works by this author on:
No. of Pages:
ASME Press
Publication date:

The aim of this paper is to demonstrate the use of Regression Based Neural Network (RBNN) method to study the problem of the natural frequencies of the rotor blade for micro unmanned helicopter [2]. The training of the traditional ANN (Artificial Neural Network) model and proposed RBNN model has been implemented in the MATLAB environment using NNT (Neural Network Tools) built-in functions. The natural frequencies (Omega) of the blade for the helicopter graphs are plotted for estimation of the natural frequencies (f1, f2, f3). The results obtained in this research show that the RBNN model, when trained, can give the vibration frequency parameters directly without going through traditional and lengthy numerical solutions procedures. Succeeding this, the numerical results, when plotted, show that with the increase in Omega, there is increase in lagging motion frequencies. The increase in the lower mode natural frequencies is smaller than that of the higher modes. This finding is in agreement with the results reported in earlier research [2],[3],[4] carried out by employing Rayleigh-Ritz and FEM respectively.

This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal