Skip to Main Content
Skip Nav Destination
Ultrasonic Welding of Lithium-Ion Batteries
Editor
Wayne W. Cai
Wayne W. Cai
Search for other works by this author on:
ISBN:
9780791861257
No. of Pages:
268
Publisher:
ASME Press
Publication date:
2017

One of the biggest challenges in manufacturing automotive lithium-ion batteries is to achieve consistent weld quality in joining multiple layers of dissimilar materials. Although most fusion welding processes face difficulties in such joining, ultrasonic welding overcomes those difficulties due to its solid-state process characteristics. However, inconsistency of weld quality still exists because of limited knowledge on the weld formation through the multiple interfaces. This chapter aims to establish real-time phenomenological observation on the multilayer ultrasonic welding process by analyzing the vibration behavior of metal layers. Such behavior is characterized by a direct measurement of the lateral displacement of each metal layer using high-speed images. Two different weld tools are used in order to investigate the effect of tool geometry on the weld formation mechanism and the overall joint quality. A series of bond density measurements is carried out to validate the observations and hypotheses of those phenomena in multilayer ultrasonic welding. The results of this research enhance the understanding of the ultrasonic welding process of multiple metal sheets and provide insights for optimum tool design to improve the quality of multilayer joints.

5.1
Introduction
5.2
Experiment
5.3
Results and Discussion
5.4
Conclusions
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal