Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings
International Conference on Computer Technology and Development, 3rd (ICCTD 2011)
By
Jianhong Zhou
Jianhong Zhou
Search for other works by this author on:
ISBN:
9780791859919
No. of Pages:
2000
Publisher:
ASME Press
Publication date:
2011

UMDA algorithm is a type of Estimation of Distribution Algorithms. This algorithm has better performance compared to others such as genetic algorithm in terms of speed, memory consumption and accuracy of solutions. It can explore unknown parts of search space well. It uses a probability vector and individuals of the population are created through the sampling. Furthermore, EO algorithm is suitable for local search of near global best solution in search space, and it does not stuck in local optimum. Hence, combining these two algorithms is able to create interaction between two fundamental concepts in evolutionary algorithms, exploration and exploitation, and achieve better results of this paper is used adaptive version of 1 -EO algorithm called EO-LA. In this method the task of choosing a replacement component is assigned to Learning Automata. During the implementation of this algorithm, according to the suitability of produced solutions, feedback signals are sent to Learning Automata until adapt selected replacement component well. In this paper, results represent the better performance of the proposed algorithm (combination of three methods) on a Graph Bi-partitioning, NP-hard problem.

Abstract
Key Words
1 Introduction
2.Univariate Marginal Distribution Algorithm
3.Extremal Optimization Algorithm
4.Learning Automata
5.Suggested Algorithm
6.Exprements and Results
7.Summaries
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal