Skip to Main Content
ASME Press Select Proceedings

International Conference on Instrumentation, Measurement, Circuits and Systems (ICIMCS 2011)

Chen Ming
Chen Ming
Search for other works by this author on:
No. of Pages:
ASME Press
Publication date:

Large-scale distributed systems, such as Grid computing environments, are recently regarded as promising platforms for data and computation-intensive applications like data mining. However, to improve the performance and achieve scalability by using these heterogeneous platforms, new data partitioning approaches and workload balancing features are needed. Association rule mining is one of the successful data mining techniques which is characterized by unpredictable load changes during the computation. In this paper we propose a dynamic load balancing strategy to enhance the performance of parallel association rule mining algorithms in the context of a Grid computing environment. This strategy is built upon a distributed model which necessitates small overheads in the communication costs for load updates and for both data and work transfers. It also supports the heterogeneity of the system and it is fault tolerant.

This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal