Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings
Intelligent Engineering Systems through Artificial Neural Networks
Editor
Cihan H. Dagli
Cihan H. Dagli
Search for other works by this author on:
K. Mark Bryden
K. Mark Bryden
Search for other works by this author on:
Steven M. Corns
Steven M. Corns
Search for other works by this author on:
Mitsuo Gen
Mitsuo Gen
Search for other works by this author on:
Kagan Tumer
Kagan Tumer
Search for other works by this author on:
Gürsel Süer
Gürsel Süer
Search for other works by this author on:
ISBN:
9780791802953
No. of Pages:
636
Publisher:
ASME Press
Publication date:
2009

In 2008, there were over 100,000 newly reported cases of colon cancer, and 40,000 cases of rectal cancer in the United States. In order to minimize the number of deaths from these diseases, researchers have been striving to find a set of genes that can accurately characterize the correct prognosis for colorectal cancer. Working with a gene expression microarray dataset of about 55,000 genes, collected from 122 colorectal cancer patients, this research developed technology to identify an optimal set of features through several methods of feature selection. These methods included coarse feature reduction, fine feature selection, and classification using a Genetic Algorithm / Support Vector Machine (GA/SVM) hybrid. However, microarray data with dimensions such as these are feature-rich and case-poor, which can lead to dangers of overfitting. This research was successful in developing a feature reduction method that was able to suggest a set of genes with potential ties to colorectal cancer, provoking further investigation into this relationship.

Abstract
Introduction
Methods
Results
Discussion
Conclusions
Acknowledgments
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal