Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings
International Hydrogen Conference (IHC 2016): Materials Performance in Hydrogen Environments
Editor
B. P. Somerday
B. P. Somerday
Search for other works by this author on:
P. Sofronis
P. Sofronis
Search for other works by this author on:
ISBN:
9780791861387
No. of Pages:
800
Publisher:
ASME Press
Publication date:
2017

In this work, we applied a finite element model to predict the cyclic lifetime of 4130 steel cylinders under the influence of hydrogen. This example is used to demonstrate the efficacy of a fatigue crack growth (FCG) model we have developed. The model was designed to be robust and incorporate features of stress-assisted hydrogen diffusion, large-scale plasticity, hydrogen gas pressure, loading frequency, and effects of microstructure. The model was calibrated to the 4130 steel material by use of tensile tests and experimental FCG results of a compact tension specimen. We then used the model to predict the hydrogen-assisted FCG rate and cycle life of a pressurized cylinder with a deliberate initial thumbnail crack. The results showed good correlation to the cyclic lifetime results of 4130 pressurized cylinders found in the literature.

Introduction
Conclusions
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal