Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings

Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17

C. H. Dagli
C. H. Dagli
Search for other works by this author on:
No. of Pages:
ASME Press
Publication date:

It is common to train a classifier with a training set, and to test it with a testing set to study the classification accuracy. In this paper, we show how to effectively use a number of validation sets obtained from the original training data to improve the performance of a classifier. The proposed validation boosting algorithm is illustrated with a support vector machine (SVM) in the application of lymphography classification. A number of runs with the algorithm is generated to show its robustness as well as to generate consensus results. At each run, a number of validation datasets are generated by randomly picking a portion of the original training dataset. At each iteration during a run, the trained classifier is used to classify the current validation dataset. The misclassified validation vectors are added to the training set for the next iteration. Every time the training set is changed, new classification borders are generated with the classifier used. Experimental results on a lymphography dataset shows that the proposed method with validation boosting can achieve much better generalization performance with a testing set than the case without validation boosting.

Support Vector Machines
Training and Validation Resampling Technique
Discussion and Conclusions
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal