Skip to Main Content
Skip Nav Destination
ASME Press Select Proceedings
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Editor
C. H. Dagli
C. H. Dagli
Search for other works by this author on:
ISBN-10:
0791802655
No. of Pages:
650
Publisher:
ASME Press
Publication date:
2007

The primary objective of this study is to develop a simplified Hot Mix Asphalt (HMA) dynamic modulus (|E*|) prediction model with fewer input variables compared to the existing regression based models without compromising prediction accuracy. ANN-based prediction models were developed using the latest comprehensive |E*| database that is available to the researchers containing 7,400 data points from 346 HMA mixtures. The ANN model predictions were compared with the existing regression-based prediction models which are included in the latest Mechanistic-Empirical Pavement Design Guide (MEPDG). The ANN based |E*| models show significantly higher prediction accuracy compared to the existing regression models although they require relatively fewer inputs. The findings of this study present a “paradigm shift” in the way the hot-mix asphalt material characterization has been handled by pavement materials engineers.

Abstract
Introduction
Ann Database Preparation
Ann |E*| Prediction Model Development
Ann |E*| Prediction Model Results
Optimization of Input Variables for Ann Model
Summary and Conclusions
References
This content is only available via PDF.
You do not currently have access to this chapter.
Close Modal

or Create an Account

Close Modal
Close Modal