Skip to Main Content
ASME Press Select Proceedings

Proceedings of the Eighth International Conference on Probabilistic Safety Assessment & Management (PSAM)

Editor
Michael G. Stamatelatos
Michael G. Stamatelatos
Search for other works by this author on:
Harold S. Blackman
Harold S. Blackman
Search for other works by this author on:
ISBN-10:
0791802442
No. of Pages:
2576
Publisher:
ASME Press
Publication date:
2006

One of the greatest challenges in evaluating reliability of digital I&C systems is how to obtain better failure rate estimates of digital components. A common practice of the digital component failure rate estimation is attempting to use empirical formulae to capture the impacts of various factors on the failure rates. The applicability of an empirical formula is questionable because it is not based on laws of physics and requires good data, which is scarce in general. In this study, the concept of population variability of the Hierarchical Bayesian Method (HBM) is applied to estimating the failure rate of a digital component using available data. Markov Chain Monte Carlo (MCMC) simulation is used to implement the HBM. Results are analyzed and compared by selecting different distribution types and priors distributions. Inspired by the sensitivity calculations and based on review of analytic derivations, it seems reasonable to suggest avoiding the use of gamma distribution in two-stage Bayesian analysis and HBM analysis.

This content is only available via PDF.
Close Modal
This Feature Is Available To Subscribers Only

Sign In or Create an Account

Close Modal
Close Modal