We present a computationally efficient approach for the intra-operative update of the feedback control policy for the steerable needle in the presence of the motion uncertainty. The solution to dynamic programming (DP) equations, to obtain the optimal control policy, is difficult or intractable for nonlinear problems such as steering flexible needle in soft tissue. We use the method of approximating Markov chain to approximate the continuous (and controlled) process with its discrete and locally consistent counterpart. This provides the ground to examine the linear programming (LP) approach to solve the imposed DP problem that significantly reduces the computational demand. A concrete example of the two-dimensional (2D) needle steering is considered to investigate the effectiveness of the LP method for both deterministic and stochastic systems. We compare the performance of the LP-based policy with the results obtained through more computationally demanding algorithm, iterative policy space approximation. Finally, the reliability of the LP-based policy dealing with motion and parametric uncertainties as well as the effect of insertion point/angle on the probability of success is investigated.

References

References
1.
Xu
,
K.
,
Goldman
,
R. E.
,
Ding
,
J.
,
Allen
,
P. K.
,
Fowler
,
D. L.
, and
Simaan
,
N.
,
2009
, “
System Design of an Insertable Robotic Effector Platform for Single Port Access (SPA) Surgery
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, IROS 2009, IEEE, St. Louis, MO, pp.
5546
5552
.
2.
Bajo
,
A.
,
Goldman
,
R. E.
,
Wang
,
L.
,
Fowler
,
D.
, and
Simaan
,
N.
,
2012
, “
Integration and Preliminary Evaluation of an Insertable Robotic Effectors Platform for Single Port Access Surgery
,”
2012 IEEE International Conference on Robotics and Automation (ICRA)
, IEEE, St. Paul, MN, pp.
3381
3387
.
3.
Khoshnam
,
M.
,
Khalaji
,
I.
, and
Patel
,
R. V.
,
2015
, “
A Robotics-Assisted Catheter Manipulation System for Cardiac Ablation With Real-Time Force Estimation
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, IEEE, Hamburg, Germany, pp.
3202
3207
.
4.
Alambeigi
,
F.
,
Seifabadi
,
R.
, and
Armand
,
M.
,
2016
, “
A Continuum Manipulator With Phase Changing Alloy
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
, IEEE, Stockholm, Sweden, (submitted).
5.
Alambeigi
,
F.
,
Sefati
,
S.
,
Murphy
,
R. J.
,
Iordachita
,
I. I.
, and
Armand
,
M.
,
2016
, “
Design and Characterization of a Debriding Tool in Robot-Assisted Treatment of Osteolysis
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
, IEEE, Stockholm, Sweden, (submitted).
6.
Kumar
,
S.
,
Narayanan
,
M.
,
Singhal
,
P.
,
Corso
,
J.
, and
Krovi
,
V.
,
2013
, “
Product of Tracking Experts for Visual Tracking of Surgical Tools
,”
2013 IEEE International Conference on Automation Science and Engineering (CASE)
, pp.
480
485
.
7.
Kumar
,
S.
,
Narayanan
,
M.
,
Singhal
,
P.
,
Corso
,
J.
, and
Krovi
,
V.
,
2014
, “
Surgical Tool Attributes From Monocular Video
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
4887
4892
.
8.
Kumar
,
S.
,
Sovizi
,
J.
,
Narayanan
,
M.
, and
Krovi
,
V.
,
2015
, “
Surgical Tool Pose Estimation From Monocular Endoscopic Videos
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
, pp.
598
603
.
9.
Alterovitz
,
R.
,
Goldberg
,
K.
, and
Okamura
,
A.
,
2005
, “
Planning for Steerable Bevel-Tip Needle Insertion Through 2D Soft Tissue With Obstacles
,”
International Conference on Robotics and Automation
, pp.
1640
1645
.
10.
Alterovitz
,
R.
,
Goldberg
,
K.
, and
Okamura
,
A.
,
2005
, “
Steering Flexible Needles Under Markov Motion Uncertainty
,”
International Conference on Intelligent Robots and Systems
, pp. 1570–1575.
11.
Alterovitz
,
R.
,
Branicky
,
M.
, and
Goldberg
,
K.
,
2008
, “
Motion Planning Under Uncertainty for Image-Guided Medical Needle Steering
,”
Int. J. Rob. Res.
,
27
(
11–12
), pp.
1361
1374
.
12.
Berg
,
J. v. d.
,
Patil
,
S.
, and
Alterovitz
,
R.
,
2012
, “
Motion Planning Under Uncertainty Using Iterative Local Optimization in Belief Space
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1263
1278
.
13.
Park
,
W.
,
Wang
,
Y.
, and
Chirikjian
,
G. S.
,
2010
, “
The Path-Of-Probability Algorithm for Steering and Feedback Control of Flexible Needles
,”
Int. J. Rob. Res.
,
29
(
7
), pp.
813
830
.
14.
Webster
,
R. J.
,
Kim
,
J. S.
,
Cowan
,
N. J.
,
Chirikjian
,
G. S.
, and
Okamura
,
A.
,
2006
, “
Nonholonomic Modeling of Needle Steering
,”
Int. J. Rob. Res.
,
25
(
5–6
), pp.
509
525
.
15.
Alterovitz
,
R.
,
Goldberg
,
K. Y.
,
Pouliot
,
J.
, and
I-Chow
,
H.
,
2009
, “
Sensorless Motion Planning for Medical Needle Insertion in Deformable Tissues
,”
IEEE Trans. Inf. Technol. Biomed.
,
13
(
2
), pp.
217
225
.
16.
Hauser
,
K.
,
Alterovitz
,
R.
,
Chentanez
,
N.
,
Okamura
,
A.
, and
Goldberg
,
K.
,
2009
, “
Feedback Control for Steering Needles Through 3D Deformable Tissue Using Helical Paths
,”
Robotics: Science and Systems
, online,
37
.
17.
Vrooijink
,
G. J.
,
Abayazid
,
M.
,
Patil
,
S.
,
Alterovitz
,
R.
, and
Misra
,
S.
,
2014
, “
Needle Path Planning and Steering in a Three-Dimensional Non-Static Environment Using Two-Dimensional Ultrasound Images
,”
Int. J. Rob. Res.
,
33
(
10
), pp.
1261
1374
.
18.
Sun
,
W.
,
Patil
,
S.
, and
Alterovitz
,
R.
,
2015
, “
High-Frequency Replanning Under Uncertainty Using Parallel Sampling-Based Motion Planning
,”
IEEE Trans. Rob.
,
31
(
1
), pp.
104
116
.
19.
Anderson
,
R.
, and
Milutinovic
,
D.
,
2011
, “
Dubins Vehicle Tracking of a Target With Unpredictable Trajectory
,”
ASME
2011 Dynamic Systems and Control Conference and Bath/ASME Symposium on Fluid Power and Motion Control,
1
, pp.
675
682
.
20.
Anderson
,
R.
,
Bakolas
,
E.
,
Milutinovi
,
D.
, and
Tsiotras
,
P.
,
2013
, “
Optimal Feedback Guidance of a Small Aerial Vehicle in the Presence of Stochastic Wind
,”
J. Guid., Control, Dyn.
,
36
(
4
), pp.
975
985
.
21.
Adurthi
,
N.
,
Singla
,
P.
, and
Singh
,
T.
,
2013
, “
Optimal Information Collection for Nonlinear Systems—An Application to Multiple Target Tracking and Localization
,”
American Control Conference (ACC)
, pp.
3864
3869
.
22.
Adurthi
,
N.
, and
Singla
,
P.
,
2014
, “
Information Driven Optimal Sensor Control for Efficient Target Localization and Tracking
,”
American Control Conference (ACC)
, pp.
610
615
.
23.
de Farias
,
D. P.
, and
Van Roy
,
B.
,
2003
, “
The Linear Programming Approach to Approximate Dynamic Programming
,”
Oper. Res.
,
51
(
6
), pp.
850
865
.
24.
Kushner
,
H. J.
, and
Dupuis
,
P.
,
2001
,
Numerical Methods for Stochastic Control Problems in Continuous Time
,
Springer
, Heidelberg, Germany.
25.
Cowan
,
N. J.
,
Goldberg
,
K.
,
Chirikjian
,
G. S.
,
Fichtinger
,
G.
,
Alterovitz
,
R.
,
Reed
,
K. B.
,
Kallem
,
V.
,
Park
,
W.
,
Misra
,
S.
, and
Okamura
,
A. M.
,
2011
, “
Robotic Needle Steering: Design, Modeling, Planning, and Image Guidance
,”
Surgical Robotics: Systems Applications and Visions
, J. Rosen, B. Hannaford, M. R. Satava, eds.,
Springer
, Heidelberg, Germany, pp. 555–582.
26.
Grant
,
M.
, and
Boyd
,
S.
,
2008
, “
Graph Implementations for Nonsmooth Convex Programs
,”
Recent Advances in Learning and Control
(Lecture Notes in Control and Information Sciences),
V.
Blondel
,
S.
Boyd
, and
H.
Kimura
, eds.,
Springer
, Heidelberg, Germany, pp.
95
110
.
27.
Grant
,
M.
, and
Boyd
,
S.
,
2014
, “
CVX: Matlab Software for Disciplined Convex Programming, Version 2.1
,” http://cvxr.com/cvx
This content is only available via PDF.