Abstract
This paper aims to develop a distributed layered control framework for the navigation, planning, and control of multi-agent quadrupedal robots subject to environments with uncertain obstacles and various disturbances. At the highest layer of the proposed layered control, a reference path for all agents is calculated, considering artificial potential fields under a priori known obstacles. Secondly, in the middle layer, we employ a distributed nonlinear model predictive control (NMPC) scheme with a one-step delay communication protocol subject to reduced-order and linear inverted pendulum (LIP) models of agents to ensure the feasibility of the gaits and collision avoidance, addressing the degree of uncertainty in real-time. Finally, low-level nonlinear whole-body controllers (WBCs) impose the full-order locomotion models of agents to track the optimal and reduced-order trajectories. The proposed controller is validated for effectiveness and robustness on up to four A1 quadrupedal robots in simulations and two robots in the experiments. Simulations and experimental validations demonstrate that the proposed approach can effectively address the real-time planning and control problem. In particular, multiple A1 robots are shown to navigate various environments, maintaining collision-free distances while being subject to unknown external disturbances such as pushes and rough terrain.