The future roles for tracked levitated vehicle (TLV) systems are identified in the context of comparison with improved passenger rail systems and short haul air systems. These new TLV systems, anticipated to be available for operational use in the 1980’s, will be capable of cruise speeds to about 300 mph, compared to 150–170 mph for high speed rail. The paper concludes that, when developed, TLV will be better than the best rail. Because of its higher speed, travel times will be shorter and operational costs per seat mile will be lower. Higher speed results in lower operating costs because it increases vehicle productivity in terms of seat-miles generated per hour. The relative preference between TLV and air systems depends on both ridership density and trip distance. TLV has much higher fixed costs than air because of the large investment in guideway and other infrastructure, so that TLV requires a larger ridership if fixed costs per passenger are to be reasonable. In operations, however, air systems lose much more time in terminal (airport) stops than TLV systems, which penalizes total trip time and vehicle productivity, especially for short trip distances. Thus air system operating costs are substantially higher than those of TLV systems for short trips. The net result is a general preference for TLV systems when ridership densities are high and trip distances are below 300–400 miles, and a preference for air systems at lower ridership densities or for longer trips. Air is distinctly superior beyond 500 miles.

This content is only available via PDF.
You do not currently have access to this content.