The nonlinear equations of motion for a railway vehicle wheelset having curved wheel profiles and wheel-flange/rail contact are presented. The dependence of axle roll and vertical displacement on lateral displacement and yaw is formulated by two holonomic constraint equations. The method of Krylov-Bogoliubov is used to derive expressions for the amplitudes of stationary oscillations. A perturbation analysis is then used to derive conditions for the stability characteristics of the stationary oscillations. The expressions for the amplitude and the stability conditions are shown to have a simple geometrical interpretation which facilitates the evaluation of the effects of design parameters on the motion. It is shown that flange clearance and the nonlinear variation of axle roll with lateral displacement significantly influence the motion of the wheelset. Stationary oscillations may occur at forward speeds both below and above the critical speed at which a linear analysis predicts the onset of instability.

This content is only available via PDF.
You do not currently have access to this content.