The problem of deriving a suitable mathematical model for complex devices is discussed. A small vibratory air pump is used as the medium of presentation. The modeling process begins with the basic coupling structure of the device. In a logical step-by-step procedure the initial model is built up to satisfy a number of functional considerations inherent to the device, such as the resonance behavior, input impedance, output impedance, and internal dissipation. At each step in the modeling process the completeness and suitability of the model is examined. Bond graphs drawn for the successively larger and more complex model clearly predict the shortcomings of the partial model and point the way to the next step. It is evident that the principle of causal relations forms a most important guiding element in the modeling process. The final model is in the form of a set of linear state equations, and scaling of the A-matrix indicates the relative importance of parameters when experimental values are substituted for literals.

This content is only available via PDF.
You do not currently have access to this content.