Abstract

A comprehensive dynamic analysis is necessary for improving the position accuracy and stability of industrial robot. However, current analytical models rarely consider the nonlinear friction of joints, which is an important factor affecting the authenticity and reliability of the prediction model. This paper proposes a nonlinear mixed friction model that considers Coulomb friction, Stribeck friction, and viscous friction. Based on this mixed friction model, both a pure rigid body dynamic analysis model and a rigid-flexible coupling analysis model are established, and the angular velocity, trajectory of the end effector are calculated, farther the changes of joint torque with or without friction are visualized. After comparing the calculated results, the Kriging model is used to map the friction parameter relationship between the two dynamic models. This paper also proposes a comprehensive evaluation model, named the motion stability model, which can evaluate both the strength and the stability of the motion. By applying motion stability model, the optimization problem of minimizing internal node displacement under the constraint of volume load is constructed based on the solid isotropic material with penalization (SIMP) method. Compared with the unoptimized results, the structural mass of the studied object is reduced, and both the first-order natural frequency and strength are effectively improved. The dynamic model and optimization method provide important theoretical support for the optimization design of industrial robot.

References

1.
Bien
,
D. X.
,
Anh
,
M. N.
,
Mai
,
N. T. N.
,
Trang
,
V. T. D.
,
Le Thanh
,
B.
,
Dao Van
,
D.
,
Phong
,
P. D.
, and
Nhat
,
D. D.
,
2023
, “
Statics and Dynamics Simulation Analysis of the Industrial Robot Arm Structure Based on the Generative Design
,” 2023 8th International Conference on Control and Robotics Engineering (
ICCRE
), Niigata, Japan, Apr. 21--23, pp. 238--243.10.1109/ICCRE57112.2023.10155591
2.
Cao
,
H.
,
He
,
Y.
,
Chen
,
X.
, and
Liu
,
Z.
,
2019
, “
Control of Adaptive Switching in the Sensing-Executing Mode Used to Mitigate Collision in Robot Force Control
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
11
), p.
111003
.10.1115/1.4043917
3.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2022
, “
Intuitive Physical Human–Robot Interaction Using an Underactuated Redundant Manipulator With Complete Spatial Rotational Capabilities
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011011
.10.1115/1.4051132
4.
Dong
,
Y.
,
Yu
,
Z.
,
Chen
,
X.
,
Zhu
,
X.
,
Wang
,
C.
,
Gergondet
,
P.
, and
Huang
,
Q.
,
2024
, “
Bimanual Continuous Steering Wheel Turning by a Dual-Arm Robot
,”
IEEE/ASME Trans. Mechatron.
,
29
(
3
), pp.
1773
1784
.10.1109/TMECH.2023.3316634
5.
Guardiani
,
P.
,
Ludovico
,
D.
,
Pistone
,
A.
,
Abidi
,
H.
,
Zaplana
,
I.
,
Lee
,
J.
,
Caldwell
,
D. G.
, and
Canali
,
C.
,
2022
, “
Design and Analysis of a Fully Actuated Cable-Driven Joint for Hyper-Redundant Robots With Optimal Cable Routing
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021006
.10.1115/1.4052332
6.
Baklouti
,
S.
,
Courteille
,
E.
,
Lemoine
,
P.
, and
Caro
,
S.
,
2021
, “
Input Shaping for Feed-Forward Control of Cable-Driven Parallel Robots
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
2
), p.
021007
.10.1115/1.4048354
7.
Woo Lee
,
J.
, and
Jung
,
S.
,
2022
, “
Design of a Foldable Robot Arm for a Hybrid Robot Manipulator
,” 2022 22nd International Conference on Control, Automation and Systems (
ICCAS
), Jeju, Korea, Nov. 27--Dec. 1, pp. 325--327.10.23919/ICCAS55662.2022.10003830
8.
Dong
,
F.
,
Yu
,
B.
,
Zhao
,
X.
,
Chen
,
S.
, and
Liu
,
H.
,
2023
, “
An Evenly Partition Approach to the Modeling and Constraint-Following Control for the Spatial Cooperative Dual-Robot-System
,”
ASME J. Dyn. Syst. Meas. Control
,
145
(
11
), p.
111003
.10.1115/1.4062956
9.
Li
,
J.
,
Liu
,
J.
,
Hu
,
Y.
,
Ding
,
H.
, and
Pang
,
J.
,
2021
, “
Integrated Optimization for Service Robotic Arms Involving Workspace, Drive Train, Structural Stiffness and Lightweight
,” 5th International Conference on Robotics and Automation Sciences (
ICRAS
), Wuhan, China, June 11--13, pp. 44--50.10.1109/ICRAS52289.2021.9476411
10.
Liu
,
B.
,
Sha
,
L.
,
Huang
,
K.
,
Zhang
,
W.
, and
Yang
,
H.
,
2022
, “
A Topology Optimization Method for Collaborative Robot Lightweight Design Based on Orthogonal Experiment and Its Applications
,”
Int. J. Adv. Rob. Syst.
,
19
(
1
), p.
172988142110561
.10.1109/AIEA51086.2020.00011
11.
Liu
,
F.
,
Song
,
Z.
, and
Ma
,
J.
,
2024
, “
Modeling and Analysis of a Cable-Driven Serial-Parallel Manipulator
,”
Proc. Inst. Mech. Eng., Part C
,
238
(
4
), pp.
1012
1028
.10.1177/09544062231175296
12.
Lv
,
N.
,
Liu
,
J.
, and
Jia
,
Y.
,
2022
, “
Dynamic Modeling and Control of Deformable Linear Objects for Single-Arm and Dual-Arm Robot Manipulations
,”
IEEE Trans. Rob.
,
38
(
4
), pp.
2341
2353
.10.1109/TRO.2021.3139838
13.
Nguyen
,
V.
, and
Marvel
,
J. A.
,
2022
, “
Modeling of Industrial Robot Kinematics Using a Hybrid Analytical and Statistical Approach
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051009
.10.1115/1.4053734
14.
He
,
M.
,
Wu
,
X.
,
Shao
,
G.
,
Wen
,
Y.
, and
Liu
,
T.
,
2022
, “
A Semiparametric Model-Based Friction Compensation Method for Multijoint Industrial Robot
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
3
), p.
034501
.10.1115/1.4052947
15.
Liu
,
Z.
, and
Howe
,
R. D.
,
2023
, “
Beyond Coulomb: Stochastic Friction Models for Practical Grasping and Manipulation
,”
IEEE Rob. Autom. Lett.
,
8
(
8
), pp.
5140
5147
.10.1109/LRA.2023.3292580
16.
Yang
,
W.-T.
, and
Tomizuka
,
M.
,
2022
, “
Design a Multifunctional Soft Tactile Sensor Enhanced by Machine Learning Approaches
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
8
), p.
081006
.10.1115/1.4054646
17.
Scholl
,
P.
,
Iskandar
,
M.
,
Wolf
,
S.
,
Lee
,
J.
,
Bacho
,
A.
,
Dietrich
,
A.
,
Albu-Schäffer
,
A.
, and
Kutyniok
,
G.
,
2024
, “
Learning-Based Adaption of Robotic Friction Models
,”
Rob. Comput.-Integr. Manuf.
,
89
(
0736-5845
), p.
102780
.10.1016/j.rcim.2024.102780
18.
Sha
,
L.
,
Lin
,
A.
,
Xi
,
Q.
, and
Kuang
,
S.
,
2020
, “
A Topology Optimization Method of Robot Lightweight Design Based on the Finite Element Model of Assembly and Its Applications
,”
Sci. Prog.
,
103
(
3
), p.
0036850420936482
.10.1177/0036850420936482
19.
Sim
,
Y.-W.
, and
Ramos
,
J.
,
2020
, “
The Dynamic Effect of Mechanical Losses of Actuators on the Equations of Motion of Legged Robots
,” arxiv.2011.02506.
20.
Wang
,
Y.
,
Zhou
,
Y.
,
Wei
,
L.
, and
Li
,
R.
,
2023
, “
Design of a Four-Axis Robot Arm System Based on Machine Vision
,”
Appl. Sci.
,
13
(
15
), p.
8836
.10.3390/app13158836
21.
Zhao
,
X.
,
Zhang
,
Y.
,
Ding
,
W.
,
Tao
,
B.
, and
Ding
,
H.
,
2024
, “
A Dual-Arm Robot Cooperation Framework Based on a Nonlinear Model Predictive Cooperative Control
,”
IEEE/ASME Trans. Mechatron.
,
29
(
5
), pp.
3993
4005
.10.1109/TMECH.2023.3263357
22.
Craig
,
J. J.
,
2018
,
Introduction to Robotics: Mechanics and Control
,
Pearson
,
Upper Saddle River, NJ
.
23.
Qin
,
Y.
,
Rizk-Allah
,
R. M.
,
Garg
,
H.
,
Hassanien
,
A. E.
, and
Snášel
,
V.
,
2023
, “
Intuitionistic Fuzzy-Based TOPSIS Method for Multi-Criterion Optimization Problem: A Novel Compromise Methodology
,”
AIMS Math.
,
8
(
7
), pp.
16825
16845
.10.3934/math.2023860
24.
da Silveira
,
O. A. A.
, and
Palma
,
L. F.
,
2022
, “
Some Considerations on Multi-Material Topology Optimization Using Ordered SIMP
,”
Struct. Multidiscip. Optim.
,
65
(
9
), p.
261
.10.1007/s00158-022-03379-7
You do not currently have access to this content.