Abstract

This paper presents a solution to the output regulation problem for nonlinear systems with unknown dynamics, when the states are aperiodically measured. Our methodology overcomes conventional limitations by utilizing a recurrent high-order neural network (RHONN) as an identifier. It employs a new impulsive adaptive algorithm to train the weights online at measurement instants. This methodology allows trajectory tracking with bounded error by solving the Francis–Byrnes–Isidori equations for the RHONN model and using the solution to develop a controller for the nonlinear system identified. The stability of identification and tracking errors are analyzed. Simulations have been included to demonstrate the robustness and effectiveness of the proposed technique.

References

1.
Poznyak
,
A.
,
Sanchez
,
E. N.
, and
Yu
,
W.
,
2001
,
Differential Neural Networks for Robust Nonlinear Control: Identification, State Estimation and Trajectory Tracking
,
World Scientific
, Singapore.
2.
Yu
,
W.
,
2004
, “
Nonlinear System Identification Using Discrete-Time Recurrent Neural Networks With Stable Learning Algorithms
,”
Inf. Sci.
,
158
, pp.
131
147
.10.1016/j.ins.2003.08.002
3.
Alanis
,
A. Y.
,
Sánchez
,
E. N.
, and
Loukianov
,
A. G.
,
2010
, “
Real-Time Discrete Nonlinear Identification Via Recurrent High Order Neural Networks
,”
Comput. Sist.
,
14
(
1
), pp.
63
72
.https://www.scielo.org.mx/pdf/cys/v14n1/v14n1a7.pdf
4.
Kosmatopoulos
,
E. B.
,
Polycarpou
,
M. M.
,
Christodoulou
,
M. A.
, and
Ioan-Nou
,
P. A.
,
1995
, “
High-Order Neural Network Structures for Identification of Dynamical Systems
,”
IEEE Trans. Neural Networks
,
6
(
2
), pp.
422
431
.10.1109/72.363477
5.
Peretto
,
P.
, and
Niez
,
J.-J.
,
1986
, “
Long Term Memory Storage Capacity of Multiconnected Neural Networks
,”
Biol. Cybern.
,
54
(
1
), pp.
53
63
.10.1007/BF00337115
6.
Liu
,
Q.
,
Li
,
D.
,
Ge
,
S. S.
,
Ji
,
R.
,
Ouyang
,
Z.
, and
Tee
,
K. P.
,
2021
, “
Adaptive Bias RBF Neural Network Control for a Robotic Manipulator
,”
Neurocomputing
,
447
, pp.
213
223
.10.1016/j.neucom.2021.03.033
7.
Perrusquía
,
A.
, and
Yu
,
W.
,
2021
, “
Identification and Optimal Control of Nonlinear Systems Using Recurrent Neural Networks and Reinforcement Learning: An Overview
,”
Neurocomputing
,
438
, pp.
145
154
.10.1016/j.neucom.2021.01.096
8.
Ming
,
Z.
,
Zhang
,
H.
,
Zhang
,
J.
, and
Xie
,
X.
,
2023
, “
A Novel Actor–Critic–Identifier Architecture for Nonlinear Multiagent Systems With Gradient Descent Method
,”
Automatica
,
155
, p.
111128
.10.1016/j.automatica.2023.111128
9.
Li
,
Y.
,
Liu
,
Y.
, and
Tong
,
S.
,
2022
, “
Observer-Based Neuro-Adaptive Optimized Control of Strict-Feedback Nonlinear Systems With State Constraints
,”
IEEE Trans. Neural Networks Learn. Syst.
,
33
(
7
), pp.
3131
3145
.10.1109/TNNLS.2021.3051030
10.
Johnson
,
M.
,
Kamalapurkar
,
R.
,
Bhasin
,
S.
, and
Dixon
,
W. E.
,
2015
, “
Approximate N-Player Nonzero-Sum Game Solution for an Uncertain Continuous Nonlinear System
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
8
), pp.
1645
1658
.10.1109/TNNLS.2014.2350835
11.
Shi
,
J.
,
Yue
,
D.
, and
Xie
,
X.
,
2022
, “
Optimal Leader–Follower Consensus for Constrained-Input Multiagent Systems With Completely Unknown Dynamics
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(
2
), pp.
1182
1191
.10.1109/TSMC.2020.3011184
12.
Sharma
,
S.
,
Prasad
,
S.
, and
Arulananth
,
T.
,
2024
, “
Identification of Systems Having Unstable Dynamics and Time Delays Using Delayed Recurrent Neural Networks
,”
Arabian J. Sci. Eng.
,
49
(
5
), pp.
7487
7505
.10.1007/s13369-023-08356-w
13.
Forssell
,
U.
, and
Ljung
,
L.
,
2000
, “
Identification of Unstable Systems Using Output Error and Box-Jenkins Model Structures
,”
IEEE Trans. Autom. Control
,
45
(
1
), pp.
137
141
.10.1109/9.827371
14.
Isidori
,
A.
,
1985
,
Nonlinear Control Systems: An Introduction
, Springer, Berlin/Heidelberg Germany.
15.
Castillo
,
B.
,
Di Gennaro
,
S.
,
Monaco
,
S.
, and
Normand-Cyrot
,
D.
,
1993
, “
Nonlinear Regulation for a Class of Discrete-Time Systems
,”
Syst. Control Lett.
,
20
(
1
), pp.
57
65
.10.1016/0167-6911(93)90087-M
16.
Francis
,
B. A.
, and
Wonham
,
W. M.
,
1976
, “
The Internal Model Principle of Control Theory
,”
Automatica
,
12
(
5
), pp.
457
465
.10.1016/0005-1098(76)90006-6
17.
Castillo-Toledo
,
B.
, and
Jalomo-Cuevas
,
J.
,
2004
, “
Fuzzy Robust Tracking for a Class of Nonlinear Systems-Application to the Chen's Chaotic Attractor
,”
Intell. Autom. Soft Comput.
,
10
(
1
), pp.
37
49
.10.1080/10798587.2004.10642864
18.
Castillo-Toledo
,
B.
, and
Avalos
,
A. H.
,
2005
, “
On Output Regulation for SISO Nonlinear Systems With Dynamic Neural Networks
,”
2005 IEEE International Joint Conference on Neural Networks
, Montreal, QC, Canada, July 31–Aug. 4, pp.
372
377
.10.1109/IJCNN.2005.1555859
19.
Alanis
,
A. Y.
,
Sanchez
,
E. N.
, and
Loukianov
,
A. G.
,
2007
,
Discrete-Time Adaptive Backstepping Nonlinear Control Via High-Order Neural Networks
, IEEE Trans. Neural Networks,
18
(
4
), pp. 1185–1195.10.1109/TNN.2007.899170
20.
Jaramillo
,
O.
,
Castillo-Toledo
,
B.
, and
Di Gennaro
,
S.
,
2019
, “
Robust Regulation for Linear Systems Using Impulsive Observers
,” 2019 IEEE 58th Conference on Decision and Control (
CDC
), Nice, France, Dec. 11, pp.
6313
6318
.10.1109/CDC40024.2019.9029694
21.
Jaramillo
,
O.
,
Castillo-Toledo
,
B.
, and
Di Gennaro
,
S.
,
2021
, “
Robust Impulsive Observer-Based Stabilization for Uncertain Nonlinear Systems With Sampled-Output
,”
IEEE Control Syst. Lett.
,
5
(
3
), pp.
845
850
.10.1109/LCSYS.2020.3005442
22.
Wang
,
Y.
, and
Lu
,
J.
,
2020
, “
Some Recent Results of Analysis and Control for Impulsive Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
80
, pp.
104862
.10.1016/j.cnsns.2019.104862
23.
Dashkovskiy
,
S.
, and
Feketa
,
P.
,
2016
, “
Input-to-State Stability of Impulsive Systems With Different Jump Maps
,”
IFAC-PapersOnLine
,
49
(
18
), pp.
1073
1078
.10.1016/j.ifacol.2016.10.310
24.
Hespanha
,
J. P.
,
Liberzon
,
D.
, and
Teel
,
A. R.
,
2008
, “
Lyapunov Conditions For Input-to-State Stability of Impulsive Systems
,”
Automatica
,
44
(
11
), pp.
2735
2744
.10.1016/j.automatica.2008.03.021
25.
Goebel
,
R.
,
Sanfelice
,
R. G.
, and
Teel
,
A. R.
,
2009
, “
Hybrid Dynamical Systems
,”
IEEE Control Syst. Mag.
,
29
(
2
), pp.
28
93
.10.1109/MCS.2008.931718
26.
Xu
,
X.
,
2007
, Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control-s [Book review;
W. M.
Haddad
,
V. S.
Chellaboina
, and
S. G.
Nersesov
],
IEEE Transaction on Automatic Control
, 52(11), pp.
2193
2194
.10.1109/TAC.2007.906834
27.
Li
,
X.
, and
Song
,
S.
,
2013
, “
Impulsive Control for Existence, Uniqueness, and Global Stability of Periodic Solutions of Recurrent Neural Networks With Discrete and Continuously Distributed Delays
,”
IEEE Trans. Neural Networks Learn. Syst.
,
24
(
6
), pp.
868
877
.10.1109/TNNLS.2012.2236352
28.
Stamova
,
I.
,
Stamov
,
T.
, and
Li
,
X.
,
2014
, “
Global Exponential Stability of a Class of Impulsive Cellular Neural Networks With Supremums
,”
Int. J. Adapt. Control Signal Process.
,
28
(
11
), pp.
1227
1239
.10.1002/acs.2440
29.
Hayakawa
,
T.
,
Haddad
,
W. M.
, and
Volyanskyy
,
K. Y.
,
2008
, “
Neural Network Hybrid Adaptive Control for Nonlinear Uncertain Impulsive Dynamical Systems
,”
Nonlinear Anal.: Hybrid Syst.
,
2
(
3
), pp.
862
874
.10.1016/j.nahs.2008.01.002
30.
Cybenko
,
G.
,
1989
, “
Approximation by Superpositions of a Sigmoidal Function
,”
Math. Control, Signals Syst.
,
2
(
4
), pp.
303
314
.10.1007/BF02551274
31.
Ramos
,
L.
,
Castillo-Toledo
,
B.
, and
Alvarez
,
J.
,
1997
, “
Nonlinear Regulation of an Underactuated System
,”
International Conference on Robotics and Automation
, Albuquerque, NM, Apr. 25, pp.
3288
3293
.10.1109/ROBOT.1997.606790
32.
Wang
,
J.
, and
Huang
,
J.
,
2001
, “
Neural Network Enhanced Output Regulation in Nonlinear Systems
,”
Automatica
,
37
(
8
), pp.
1189
1200
.10.1016/S0005-1098(01)00068-1
You do not currently have access to this content.