Abstract

The accuracy of industrial robots is the most serious problem in industrial manufacturing and production. Kinematic calibration can effectively improve the pose accuracy of the robot's end effector. The effect of kinematic calibration is closely related to the optimal configuration selected by parameter identification and the optimization algorithm. To solve the problem of missing information from traditional observable indexes, this paper proposes a new index based on the spatial analysis theory of matrix, which takes the super-parallel polyhedron volume of identification Jacobian as the effective information content. The new index and the condition number are used as the fitness function to run the genetic algorithm. The optimal configuration is found in the workspace of the six-degree-of-freedom parallel robot and the results are compared. After the parameter identification by the least squares method and the regularization method, the spatial position and orientation angle are, respectively, compensated for the end pose error at the discrete point in the whole space. The compensation results show that the error of the optimal configuration based on the new index in the position coordinate is reduced by 84.15% compared with the error before compensation, and the error is reduced by 26.05% compared with the condition number compensation result. The compensation effect is better at the edge position of the space, and the compensation result of the orientation angle is slightly better than the condition number compensation result.

References

1.
Menq
,
C.
,
Borm
,
J.
, and
Lai
,
J. Z.
,
1989
, “
Identification and Observability Measure of a Basis Set of Error Parameters in Robot Calibration
,”
ASME. J. Mech. Trans. Autom.
,
111
(
4
), pp.
513
518
.10.1115/1.3259031
2.
Driels
,
M.
, and
Pathre
,
U. S.
,
1990
, “
Significance of Observation Strategy on the Design of Robot Calibration Experiments
,”
J. Field Rob.
,
7
(
2
), pp.
197
223
.10.1002/rob.4620070206
3.
Nahvi
,
A.
, and
Hollerbach
,
J. M.
,
1996
, “
The Noise Amplification Index for Optimal Pose Selection in Robot Calibration
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
1, Minneapolis, MN,
Apr. 22--28, pp.
647
654
.10.1109/ROBOT.1996.503848
4.
Nahvi
,
A.
,
Hollerbach
,
J. M.
, and
Hayward
,
V.
,
1994
, “
Calibration of a Parallel Robot Using Multiple Kinematic Closed Loops
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol. 1, San Diego, CA, May 8--13, pp.
407
412
.10.1109/ROBOT.1994.351262
5.
Sun
,
Y.
, and
Hollerbach
,
J. M.
,
2008
, “
Observability Index Selection for Robot Calibration
,”
IEEE International Conference on Robotics and Automation
, Pasadena, CA, May 19--23, pp.
831
836
.10.1109/ROBOT.2008.4543308
6.
Joubair
,
A.
, and
Bonev
,
I. A.
,
2013
, “
Comparison of the Efficiency of Five Observability Indices for Robot Calibration
,”
Mech. Mach. Theory
,
70
, pp.
254
265
.10.1016/j.mechmachtheory.2013.07.015
7.
Wang
,
W.
,
Song
,
H.
,
Yan
,
Z.
,
Sun
,
L.
, and
Du
,
Z.
,
2018
, “
A Universal Index and an Improved PSO Algorithm for Optimal Pose Selection in Kinematic Calibration of a Novel Surgical Robot
,”
Rob. Comput.-Integr. Manuf.
,
50
, pp.
90
101
.10.1016/j.rcim.2017.09.011
8.
Cardou
,
P.
,
Bouchard
,
S.
, and
Gosselin
,
C.
,
2010
, “
Kinematic-Sensitivity Indices for Dimensionally Nonhomogeneous Jacobian Matrices
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
166
173
.10.1109/TRO.2009.2037252
9.
Clément Gosselin,
1988
, “
Kinematic Analysis, Optimization and Programming of Parallel Robotic Manipulators
,” McGill University, Montreal, QC, Canada, https://www.researchgate.net/publication/41230953_Kinematic_analysis_optimization_and_programming_of_parallel_robotic_manipulators
10.
Ye
,
H.
, and
Wu
,
J.
,
2023
, “
Residual Index for Measurement Configuration Optimization in Robot Kinematic Calibration
,”
Sci. China Technol. Sci.
,
66
(
7
), pp.
1899
1915
.10.1007/s11431-022-2409-1
11.
Chen
,
G.
,
Wang
,
L.
,
Yuan
,
B.
, and
Liu
,
D.
,
2019
, “
Configuration Optimization for Manipulator Kinematic Calibration Based on Comprehensive Quality Index
,”
IEEE Access
,
7
, pp.
50179
50197
.10.1109/ACCESS.2019.2910325
12.
Jiang
,
X.
,
Fang
,
L.
, and
Gao
,
Y.
,
2020
, “
A Multilevel Index Optimization Method for Fast Kinematic Calibration Configuration of Serial Manipulators Based on Compute Unified Device Architecture Parallel Computing
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
, 234, pp.
4708
4724
.
13.
Li
,
J.
,
Xie
,
F.
,
Liu
,
X.
,
Mei
,
B.
, and
Li
,
H.
,
2018
, “
A Spatial Vector Projection Based Error Sensitivity Analysis Method for Industrial Robots
,”
J. Mech. Sci. Technol.
,
32
(
6
), pp.
2839
2850
.10.1007/s12206-018-0540-y
14.
Zhang
,
F.
,
Shang
,
W.
, and
Cong
,
S.
,
2018
, “
Choosing Measurement Configurations for Kinematic Calibration of Cable-Driven Parallel Robots
,”
Third International Conference on Advanced Robotics and Mechatronics
(
ICARM
), Singapore, July 18--20, pp.
397
402
.10.1109/ICARM.2018.8610816
15.
Sun
,
L.
,
Du, Z.
,
Yan, Z.
, and
Song
,
H.
,
2020
, “
Selected Optimal Measurement Configuration Based Robot Kinematics Calibration Method, Involves Selecting Optimal Measurement Configuration of Robot Based on Improved Particle Swarm Optimization Algorithm
,” Patent No. CN110900608A.
16.
Zhuang
,
H.
,
Wu
,
J.
, and
Huang
,
W.
,
1996
, “
Optimal Planning of Robot Calibration Experiments by Genetic Algorithms
,”
Proceedings of IEEE International Conference on Robotics and Automation
, Vol.
2, Minneapolis, MN,
Apr. 22--28, pp.
981
986
.10.1109/ROBOT.1996.506836
17.
Zhuang
,
H.
,
Wang
,
K.
, and
Roth
,
Z. S.
,
1994
, “
Optimal Selection of Measurement Configurations for Robot Calibration Using Simulated Annealing
,”
Proceedings of the 1994 IEEE International Conference on Robotics and Automation
, Vol. 1, San Diego, CA, May 8--13, pp.
393
398
.10.1109/ROBOT.1994.351264
18.
Luo
,
X.
,
Xie
,
F.
,
Liu
,
X.
, and
Xie
,
Z.
,
2021
, “
Kinematic Calibration of a 5-Axis Parallel Machining Robot Based on Dimensionless Error Mapping Matrix
,”
Rob. Comput.-Integr. Manuf.
,
70
, p.
102115
.10.1016/j.rcim.2021.102115
19.
Luo
,
X.
,
Xie
,
F.
, and
Liu
,
X.
,
2020
, “
Kinematic Calibration of the 3-Degree-of-Freedom Redundantly Actuated Spatial Parallel Module of a Five-Axis Hybrid Machine
,”
Proc. the Inst. Mech. Eng. Part B J. Eng. Manuf.
, 234, pp.
1185
1197
.10.1177/0954405420911299
20.
Wu
,
H.
,
Kong
,
L.
,
Li
,
Q.
,
Wang
,
H.
, and
Chen
,
G.
,
2023
, “
A Comparative Study on Kinematic Calibration for a 3-DOF Parallel Manipulator Using the Complete-Minimal, Inverse-Kinematic and Geometric-Constraint Error Models
,”
Chin. J. Mech. Eng.
,
36
(
1
), p.
121
.10.1186/s10033-023-00940-3
21.
Zak
,
G.
,
Benhabib
,
B.
,
Fenton
,
R. G.
, and
Saban
,
I.
,
1994
, “
Application of the Weighted Least Squares Parameter Estimation Method to the Robot Calibration
,”
ASME J. Mech. Des.
,
116
(
3
), pp.
890
893
.10.1115/1.2919465
22.
Peng
,
D.
,
Zhao
,
C.
, and
Qi
,
E.
,
2020
, “
Research on Motion System Identification of Inspection Robot Based on Quasi-Model Calibration Kalman Filter
,”
Elect. Drive
,
50
, pp.
74
80
.10.19457/j.1001?2095.dqcd19286
23.
Motta
,
J. M. S. T.
,
de Carvalho
,
G. C.
, and
McMaster
,
R. S.
,
2001
, “
Robot Calibration Using a 3D Vision-Based Measurement System With a Single Camera
,”
Rob. Comput. Integr. Manuf.
,
17
(
6
), pp.
487
497
.10.1016/S0736-5845(01)00024-2
24.
Hong
,
P.
,
Tian
,
W.
,
Mei
,
D.
, and
Zeng
,
Y.
,
2015
, “
Space Gridding Robot Variable Parameter Accuracy Compensation Technology
,”
Robot
,
37
, pp.
327
335
.10.13973/j.cnki.robot.2015.0327
25.
Grotjahn
,
M.
,
Daemi
,
M.
, and
Heimann
,
B.
,
2001
, “
Friction and Rigid Body Identification of Robot Dynamics
,”
Int. J. Solids Struct.
,
38
(
10–13
), pp.
1889
1902
.10.1016/S0020-7683(00)00141-4
26.
Yin
,
F.
,
Wang
,
L.
,
Tian
,
W.
, and
Zhang
,
X.
,
2023
, “
Kinematic Calibration of a 5-DOF Hybrid Machining Robot Using an Extended Kalman Filter Method
,”
Precis. Eng.
,
79
, pp.
86
93
.10.1016/j.precisioneng.2022.09.007
27.
Wu
,
Y.
,
Klimchik
,
A.
,
Caro
,
S.
,
Furet
,
B.
, and
Pashkevich
,
A.
,
2015
, “
Geometric Calibration of Industrial Robots Using Enhanced Partial Pose Measurements and Design of Experiments
,”
Rob. Comput.-Integr. Manuf.
,
35
, pp.
151
168
.10.1016/j.rcim.2015.03.007
28.
Haznedar
,
B.
, and
Kalinli
,
A.
,
2018
, “
Training ANFIS Structure Using Simulated Annealing Algorithm for Dynamic Systems Identification
,”
Neurocomputing
,
302
, pp.
66
74
.10.1016/j.neucom.2018.04.006
29.
Huang
,
T.
,
Zhao
,
D.
,
Yin
,
F.
,
Tian
,
W.
, and
Chetwynd
,
D. G.
,
2019
, “
Kinematic Calibration of a 6-DOF Hybrid Robot by Considering Multicollinearity in the Identification Jacobian
,”
Mech. Mach. Theory
,
131
, pp.
371
384
.10.1016/j.mechmachtheory.2018.10.008
30.
Liu
,
H.
,
2010
, “
Integrated Modeling Theory, Method and Engineering Application of Low Degree of Freedom Robot Mechanism
,” Doctoral thesis, Tianjin University, China.
You do not currently have access to this content.