Abstract

We study a realistic model of series elastic actuation (SEA) under velocity-sourced impedance control (VSIC), where the inherent damping of the series elastic element is considered during the analysis, even when only the elasticity of the series damped elastic element is used to estimate the interaction forces. We establish a fundamental rendering limitation when the viscous damping of the physical filter is considered in the plant model and prove that passive rendering of stiffness levels that are higher than the stiffness of the physical filter, as well as passive rendering of Voigt models whose damping levels exceed the physical damping of the plant, are possible. We introduce passive physical equivalents of the closed-loop SEA systems with inherent series damping while rendering Kelvin-Voigt, spring, and null impedance models to provide an intuitive understanding of the passivity bounds and to enable rigorous comparisons of rendering performance among various closed-loop systems with different plant models (including or omitting the series damping) and/or controllers (utilizing different interaction force estimates). We present a comprehensive set of experiments to verify our results and demonstrate the effect of including/omitting the damping of the physical filter in the model of SEA.

References

1.
Howard
,
R. D.
,
1990
, “
Joint and Actuator Design for Enhanced Stability in Robotic Force Control
,”
Ph.D. thesis
,
MIT
,
Cambridge, MA
.http://hdl.handle.net/1721.1/42467
2.
Pratt
,
G. A.
, and
Williamson
,
M. M.
,
1995
, “
Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems,
Pittsburgh, PA, Aug. 5--9, pp.
399
406
.10.1109/IROS.1995.525827
3.
Robinson
,
D. W.
,
Pratt
,
J. E.
,
Paluska
,
D. J.
, and
Pratt
,
G. A.
,
1999
, “
Series Elastic Actuator Development for a Biomimetic Walking Robot
,”
IEEE International Conference on Advanced Intelligent Mechatronics
, Atlanta, GA, Sept. 19–23, pp.
561
568
.10.1109/AIM.1999.803231
4.
An
,
C.
, and
Hollerbach
,
J.
,
1987
, “
Dynamic Stability Issues in Force Control of Manipulators
,”
American Control Conference
, Minneapolis, MN, June 10–12, pp.
821
827
.10.23919/ACC.1987.4789427
5.
Eppinger
,
S.
, and
Seering
,
W.
,
1987
, “
Understanding Bandwidth Limitations in Robot Force Control
,”
IEEE International Conference on Robotics and Automation
, Raleigh, NC, Mar. 31–Apr. 3, pp.
904
909
.10.1109/ROBOT.1987.1087932
6.
Newman
,
W. S.
,
1992
, “
Stability and Performance Limits of Interaction Controllers
,”
ASME J. Dyn. Syst., Meas., Control
,
114
(
4
), pp.
563
570
.10.1115/1.2897725
7.
Wyeth
,
G.
,
2008
, “
Demonstrating the Safety and Performance of a Velocity Sourced Series Elastic Actuator
,”
IEEE International Conference on Robotics and Automation
, Pasadena, CA, May 19–23, pp.
3642
3647
.10.1109/ROBOT.2008.4543769
8.
Otaran
,
A.
,
Tokatli
,
O.
, and
Patoglu
,
V.
,
2021
, “
Physical Human-Robot Interaction Using HandsOn-SEA: An Educational Robotic Platform With Series Elastic Actuation
,”
IEEE Trans. Haptics
,
14
(
4
), pp.
922
929
.10.1109/TOH.2021.3081982
9.
Vallery
,
H.
,
Ekkelenkamp
,
R.
,
Van Der Kooij
,
H.
, and
Buss
,
M.
,
2007
, “
Passive and Accurate Torque Control of Series Elastic Actuators
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
, San Diego, CA, Oct. 29–Nov. 2, pp.
3534
3538
.10.1109/IROS.2007.4399172
10.
Vallery
,
H.
,
Veneman
,
J.
,
Van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
Van Der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
60
69
.10.1109/MRA.2008.927689
11.
Tagliamonte
,
N. L.
, and
Accoto
,
D.
,
2014
, “
Passivity Constraints for the Impedance Control of Series Elastic Actuators
,”
Inst. Mech. Eng., Part I
,
228
(
3
), pp.
138
153
.10.1177/0959651813511615
12.
Calanca
,
A.
,
Muradore
,
R.
, and
Fiorini
,
P.
,
2017
, “
Impedance Control of Series Elastic Actuators: Passivity and Acceleration-Based Control
,”
Mechatronics
,
47
, pp.
37
48
.10.1016/j.mechatronics.2017.08.010
13.
Tosun
,
F. E.
, and
Patoglu
,
V.
,
2020
, “
Necessary and Sufficient Conditions for the Passivity of Impedance Rendering With Velocity-Sourced Series Elastic Actuation
,”
IEEE Trans. Rob.
,
36
(
3
), pp.
757
772
.10.1109/TRO.2019.2962332
14.
Kenanoglu
,
C. U.
, and
Patoglu
,
V.
,
2024
, “
Passive Realizations of Series Elastic Actuation: Effects of Plant and Controller Dynamics on Haptic Rendering Performance
,”
IEEE Trans. Haptics
,
17
(
4
), pp.
882
899
.10.1109/TOH.2024.3470236
15.
Kenanoglu
,
C. U.
, and
Patoglu
,
V.
,
2023
, “
A Fundamental Limitation of Passive Spring Rendering With Series Elastic Actuation
,”
IEEE Trans. Haptics
,
16
(
4
), pp.
456
462
.10.1109/TOH.2023.3260063
16.
Kenanoglu
,
C. U.
, and
Patoglu
,
V.
,
2022
, “
Passivity of Series Elastic Actuation Under Model Reference Force Control During Null Impedance Rendering
,”
IEEE Trans. Haptics
,
15
(
1
), pp.
51
56
.10.1109/TOH.2021.3140143
17.
Hurst
,
J.
,
Rizzi
,
A.
, and
Hobbelen
,
D.
,
2004
, “
Series Elastic Actuation: Potential and Pitfalls
,”
International Conference on Climbing and Walking Robots
, pp.
1
6
.https://mime.engineering.oregonstate.edu/research/drl/_documents/hurst_2004a.pdf
18.
Oblak
,
J.
, and
Matjačić
,
Z.
,
2011
, “
Design of a Series Visco-Elastic Actuator for Multi-Purpose Rehabilitation Haptic Device
,”
J. Neuroeng. Rehabil.
,
8
(
1
), pp. 1--14.10.1186/1743-0003-8-3
19.
Garcia
,
E.
,
Arevalo
,
J. C.
,
Muñoz
,
G.
, and
Gonzalez-de Santos
,
P.
,
2011
, “
Combining Series Elastic Actuation and Magneto-Rheological Damping for the Control of Agile Locomotion
,”
Rob. Auton. Syst.
,
59
(
10
), pp.
827
839
.10.1016/j.robot.2011.06.006
20.
Laffranchi
,
M.
,
Tsagarakis
,
N.
, and
Caldwell
,
D. G.
,
2011
, “
A Compact Compliant Actuator With Variable Physical Damping
,”
IEEE International Conference on Robotics and Automation
, Shanghai, China, May 9–13, pp.
4644
4650
.10.1109/ICRA.2011.5979915
21.
Kim
,
M. J.
,
Werner
,
A.
,
Loeffl
,
F. C.
, and
Ott
,
C.
,
2017
, “
Enhancing Joint Torque Control of Series Elastic Actuators With Physical Damping
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29--June 3, pp.
1227
1234
.10.1109/ICRA.2017.7989145
22.
Mengilli
,
U.
,
Orhan
,
Z. O.
,
Caliskan
,
U.
, and
Patoglu
,
V.
,
2021
, “
Passivity of Series Damped Elastic Actuation Under Velocity-Sourced Impedance Control
,” IEEE World Haptics Conference (
WHC
), Montreal, QC, Canada, July 6--9, pp.
379
384
.10.1109/WHC49131.2021.9517159
23.
Mengilli
,
U.
,
Caliskan
,
U.
,
Orhan
,
Z. O.
, and
Patoglu
,
V.
,
2020
, “
Two-Port Analysis of Stability and Transparency in Series Damped Elastic Actuation
,” arXiv:2011.00664.
24.
Focchi
,
M.
,
Medrano-Cerda
,
G. A.
,
Boaventura
,
T.
,
Frigerio
,
M.
,
Semini
,
C.
,
Buchli
,
J.
, and
Caldwell
,
D. G.
,
2016
, “
Robot Impedance Control and Passivity Analysis With Inner Torque and Velocity Feedback Loops
,”
Control Theory Technol.
,
14
(
2
), pp.
97
112
.10.1007/s11768-016-5015-z
25.
Kenanoglu
,
O. T.
,
Kenanoglu
,
C. U.
, and
Patoglu
,
V.
,
2023
, “
Effect of Low-Pass Filtering on Passivity and Rendering Performance of Series Elastic Actuation
,”
IEEE Trans. Haptics
,
16
(
4
), pp.
567
573
.10.1109/TOH.2023.3273168
26.
Colgate
,
J. E.
, and
Hogan
,
N.
,
1988
, “
Robust Control of Dynamically Interacting Systems
,”
Int. J. Control
,
48
(
1
), pp.
65
88
.10.1080/00207178808906161
27.
Colgate
,
E.
, and
Hogan
,
N.
,
1989
, “
An Analysis of Contact Instability in Terms of Passive Physical Equivalents
,”
Proceedings of International Conference on Robotics and Automation
, Scottsdale, AZ, May 14–19, pp.
404
409
.10.1109/ROBOT.1989.100021
28.
Smith
,
M. C.
,
2002
, “
Synthesis of Mechanical Networks: The Inerter
,”
IEEE Trans. Autom. Control
,
47
(
10
), pp.
1648
1662
.10.1109/TAC.2002.803532
29.
Chen
,
M. Z.
, and
Smith
,
M. C.
,
2007
, “
Mechanical Networks Comprising One Damper and One Inerter
,” IEEE European Control Conference (
ECC
), Kos, Greece, July 2–5, pp.
4917
4924
.10.23919/ECC.2007.7068320
30.
Chen
,
M. Z.
, and
Smith
,
M. C.
,
2009
, “
Restricted Complexity Network Realizations for Passive Mechanical Control
,”
IEEE Trans. Autom. Control
,
54
(
10
), pp.
2290
2301
.10.1109/TAC.2009.2028953
31.
Chen
,
M. Z.
,
Wang
,
K.
,
Zou
,
Y.
, and
Lam
,
J.
,
2012
, “
Realization of a Special Class of Admittances With One Damper and One Inerter
,” IEEE Conference on Decision and Control (
CDC
), Maui, HI, Dec. 10--13, pp.
3845
3850
.10.1109/CDC.2012.6427085
32.
Chen
,
M. Z.
,
Wang
,
K.
,
Zou
,
Y.
, and
Lam
,
J.
,
2013
, “
Realization of a Special Class of Admittances With One Damper and One Inerter for Mechanical Control
,”
IEEE Trans. Autom. Control
,
58
(
7
), pp.
1841
1846
.10.1109/TAC.2013.2264740
33.
Chen
,
M. Z.
,
Wang
,
K.
,
Shu
,
Z.
, and
Li
,
C.
,
2013
, “
Realizations of a Special Class of Admittances With Strictly Lower Complexity Than Canonical Forms
,”
IEEE Trans. Circuits Syst. I
,
60
(
9
), pp.
2465
2473
.10.1109/TCSI.2013.2245471
34.
Chen
,
M. Z.
,
Wang
,
K.
,
Zou
,
Y.
, and
Chen
,
G.
,
2015
, “
Realization of Three-Port Spring Networks With Inerter for Effective Mechanical Control
,”
IEEE Trans. Autom. Control
,
60
(
10
), pp.
2722
2727
.10.1109/TAC.2015.2394875
35.
Caliskan
,
U.
,
Apaydin
,
A.
,
Otaran
,
A.
, and
Patoglu
,
V.
,
2018
, “
A Series Elastic Brake Pedal to Preserve Conventional Pedal Feel Under Regenerative Braking
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
(
IROS
), Madrid, Spain, Oct. 1–5, pp.
1367
1373
.10.1109/IROS.2018.8594317
36.
Caliskan
,
U.
, and
Patoglu
,
V.
,
2020
, “
Efficacy of Haptic Pedal Feel Compensation on Driving With Regenerative Braking
,”
IEEE Trans. Haptics
,
13
(
1
), pp.
175
182
.10.1109/TOH.2020.2967394
37.
Colgate
,
J. E.
,
1988
, “
The Control of Dynamically Interacting Systems
,”
Ph.D. thesis
,
Massachusetts Institute of Technology
,
Cambridge, MA
.http://hdl.handle.net/1721.1/14380
38.
Losey
,
D. P.
, and
O'Malley
,
M. K.
,
2017
, “
Effects of Discretization on the K-Width of Series Elastic Actuators
,”
IEEE International Conference on Robotics and Automation
(
ICRA
), Singapore, May 29--June 3, pp.
421
426
.10.1109/ICRA.2017.7989054
39.
Hannaford
,
B.
, and
Ryu
,
J.-H.
,
2002
, “
Time Domain Passivity Control of Haptic Interfaces
,”
IEEE Trans. Rob. Autom.
,
18
(
1
), pp.
1
10
.10.1109/70.988969
40.
Buerger
,
S. P.
, and
Hogan
,
N.
,
2007
, “
Complementary Stability and Loop Shaping for Improved Human–Robot Interaction
,”
IEEE Trans. Rob.
,
23
(
2
), pp.
232
244
.10.1109/TRO.2007.892229
41.
Aydin
,
Y.
,
Tokatli
,
O.
,
Patoglu
,
V.
, and
Basdogan
,
C.
,
2018
, “
Stable Physical Human-Robot Interaction Using Fractional Order Admittance Control
,”
IEEE Trans. Haptics
,
11
(
3
), pp.
464
475
.10.1109/TOH.2018.2810871
42.
Aydin
,
Y.
,
Tokatli
,
O.
,
Patoglu
,
V.
, and
Basdogan
,
C.
,
2020
, “
A Computational Multicriteria Optimization Approach to Controller Design for Physical Human-Robot Interaction
,”
IEEE Trans. Rob.
,
36
(
6
), pp.
1791
1804
.10.1109/TRO.2020.2998606
43.
Tokatli
,
O.
, and
Patoglu
,
V.
,
2015
, “
Stability of Haptic Systems With Fractional Order Controllers
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28--Oct. 2, pp.
1172
1177
.10.1109/IROS.2015.7353518
44.
Tokatli
,
O.
, and
Patoglu
,
V.
,
2018
, “
Using Fractional Order Elements for Haptic Rendering
,”
Robotics Research
, Springer, Cham, Switzerland, pp.
373
388
.10.1007/978-3-319-51532-8_23
45.
Stein
,
G.
,
2003
, “
Respect the Unstable
,”
IEEE Control Syst. Mag.
,
23
(
4
), pp.
12
25
.10.1109/MCS.2003.1213600
46.
Chen
,
J.
,
Fang
,
S.
, and
Ishii
,
H.
,
2019
, “
Fundamental Limitations and Intrinsic Limits of Feedback: An Overview in an Information Age
,”
Annu. Rev. Control
,
47
, pp.
155
177
.10.1016/j.arcontrol.2019.03.011
47.
Haykin
,
S.
,
1970
,
Active Network Theory
,
Addison-Wesley Pub. Co
,
Reading, MA
.
You do not currently have access to this content.