Abstract

This paper presents an innovative approach to robot motion control that utilizes a noninertial tool frame with a specific parametrization to maintain a constant tool speed. The approach employs an efficient numerical technique that generates the constant-speed trajectory, correlating time with the curve's arc length. The robot motion equations are derived along the curve using two types of noninertial frames: (1) a rotation-minimizing frame (Bishop frame) which leverages its minimal twist property to simplify the motion equations and facilitates stable kinematics at trajectory inflection points and (2) a Darboux frame which is employed for paths given by spatial curves on surfaces. These motion equations are developed by projecting the trajectory tracking error onto the tangential, binormal, and normal directions of the moving frames. Feedback control laws are then developed for the motion equations in these projected (or transformed) coordinates to ensure stable trajectory error convergence to zero. Pertinent discussions are provided related to the advantages of using a moving frame over a fixed frame for enhanced precision in robotic motion control. The proposed approach facilitates precise spatial trajectory tracking, which is validated through real-time experiments with a Kuka iiwa robot, demonstrating its benefits in robot motion control for a wide variety of applications.

References

1.
Lee
,
I. D.
,
Seo
,
J. H.
,
Kim
,
Y. M.
,
Choi
,
J.
,
Han
,
S.
, and
Yoo
,
B.
,
2020
, “
Automatic Pose Generation for Robotic 3-d Scanning of Mechanical Parts
,”
IEEE Trans. Rob.
,
36
(
4
), pp.
1219
1238
.10.1109/TRO.2020.2980161
2.
Bj¨ornsson
,
A.
,
Jonsson
,
M.
, and
Johansen
,
K.
,
2018
, “
Automated Material Handling in Composite Manufacturing Using Pick-and-Place Systems–a Review
,”
Rob. Comput.-Integr. Manuf.
,
51
, pp.
222
229
.10.1016/j.rcim.2017.12.003
3.
Wen
,
Y.
,
Jaeger
,
D. J.
, and
Pagilla
,
P. R.
,
2022
, “
Uniform Coverage Tool Path Generation for Robotic Surface Finishing of Curved Surfaces
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
4931
4938
.10.1109/LRA.2022.3152695
4.
Lee
,
D.
, and
Ha
,
C.-W.
,
2020
, “
Optimization Process for Polynomial Motion Profiles to Achieve Fast Movement With Low Vibration
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1892
1901
.10.1109/TCST.2020.2998094
5.
Bai
,
Y.
,
Chen
,
X.
,
Sun
,
H.
, and
Yang
,
Z.
,
2018
, “
Time-Optimal Freeform s-Curve Profile Under Positioning Error and Robustness Constraints
,”
IEEE/ASME Trans. Mechatronics
,
23
(
4
), pp.
1993
2003
.10.1109/TMECH.2018.2835830
6.
Caccavale
,
F.
,
Natale
,
C.
,
Siciliano
,
B.
, and
Villani
,
L.
,
1998
, “
Resolved-Acceleration Control of Robot Manipulators: A Critical Review With Experiments
,”
Robotica
,
16
(
5
), pp.
565
573
.10.1017/S0263574798000290
7.
Campa
,
R.
,
Kelly
,
R.
, and
Garcia
,
E.
,
2001
, “
On Stability of the Resolved Acceleration Control
,”
Proceedings of IEEE International Conference on Robotics and Automation
(
Cat. No.01CH37164
), Seoul, South Korea, May 21--26, pp.
3523
3528
.10.1109/ROBOT.2001.933163
8.
Nakanishi
,
J.
,
Cory
,
R.
,
Mistry
,
M.
,
Peters
,
J.
, and
Schaal
,
S.
,
2008
, “
Operational Space Control: A Theoretical and Empirical Comparison
,”
Int. J. Rob. Res.
,
27
(
6
), pp.
737
757
.10.1177/0278364908091463
9.
Sentis
,
L.
, and
Khatib
,
O.
,
2005
, “
Synthesis of Whole-Body Behaviors Through Hierarchical Control of Behavioral Primitives
,”
Int. J. Humanoid Rob.
,
2
(
4
), pp.
505
518
.10.1142/S0219843605000594
10.
Mansard
,
N.
,
Khatib
,
O.
, and
Kheddar
,
A.
,
2009
, “
A Unified Approach to Integrate Unilateral Constraints in the Stack of Tasks
,”
IEEE Trans. Rob.
,
25
(
3
), pp.
670
685
.10.1109/TRO.2009.2020345
11.
Chi
,
W.
,
Wang
,
C.
,
Wang
,
J.
, and
Meng
,
M. Q.-H.
,
2019
, “
Risk-Dtrrt-Based Optimal Motion Planning Algorithm for Mobile Robots
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
3
), pp.
1271
1288
.10.1109/TASE.2018.2877963
12.
Hehn
,
M.
, and
D'Andrea
,
R.
,
2015
, “
Real-Time Trajectory Generation for Quadrocopters
,”
IEEE Trans. Rob.
,
31
(
4
), pp.
877
892
.10.1109/TRO.2015.2432611
13.
Pham
,
H.
, and
Pham
,
Q.-C.
,
2018
, “
A New Approach to Time-Optimal Path Parameterization Based on Reachability Analysis
,”
IEEE Trans. Rob.
,
34
(
3
), pp.
645
659
.10.1109/TRO.2018.2819195
14.
Berscheid
,
L.
, and
Kröger
,
T.
,
2021
, “
Jerk-Limited Real-Time Trajectory Generation With Arbitrary Target States
,”
Robotics: Science and Systems
, Virtual, July 12--16, pp. 1--9.https://www.roboticsproceedings.org/rss17/p015.pdf
15.
Holmes
,
P.
,
Kousik
,
S.
,
Zhang
,
B.
,
Raz
,
D.
,
Barbalata
,
C.
,
Johnson-Roberson
,
M.
, and
Vasudevan
,
R.
,
2020
, “
Reachable Sets for Safe, Realtime Manipulator Trajectory Design
,”
Robotics: Systems and Science Conference
, Corvalis, OR, July 12–16, pp. 1–9.https://roboticsproceedings.org/rss16/p100.pdf
16.
Wen
,
Y.
, and
Pagilla
,
P. R.
,
2021
, “
A Novel 3d Path Following Control Framework for Robots Performing Surface Finishing Tasks
,”
Mechatronics
,
76
, p.
102540
.10.1016/j.mechatronics.2021.102540
17.
Wen
,
Y.
, and
Pagilla
,
P.
,
2023
, “
Path-Constrained and Collision-Free Optimal Trajectory Planning for Robot Manipulators
,”
IEEE Trans. Autom. Sci. Eng.
,
20
(
2
), pp.
763
774
.10.1109/TASE.2022.3169989
18.
Chiu
,
G.-C.
, and
Tomizuka
,
M.
,
2001
, “
Contouring Control of Machine Tool Feed Drive Systems: A Task Coordinate Frame Approach
,”
IEEE Trans. Control Syst. Technol.
,
9
(
1
), pp.
130
139
.10.1109/87.896754
19.
Hladio
,
A.
,
Nielsen
,
C.
, and
Wang
,
D.
,
2013
, “
Path Following for a Class of Mechanical Systems
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
2380
2390
.10.1109/TCST.2012.2223470
20.
Tang
,
L.
, and
Landers
,
R. G.
,
2013
, “
Multiaxis Contour Control—The State of the Art
,”
IEEE Trans. Control Syst. Technol.
,
21
(
6
), pp.
1997
2010
.10.1109/TCST.2012.2235179
21.
Gill
,
R. J.
,
Kulíc
,
D.
, and
Nielsen
,
C.
,
2015
, “
Spline Path Following for Redundant Mechanical Systems
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1378
1392
.10.1109/TRO.2015.2489502
22.
Yao
,
B.
,
Hu
,
C.
, and
Wang
,
Q.
,
2011
, “
An Orthogonal Global Task Coordinate Frame for Contouring Control of Biaxial Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
4
), pp.
622
634
.10.1109/TMECH.2011.2111377
23.
Wang
,
C.
,
2017
, “
Three-Dimensional Curve Tracking for Particles Using Gyroscopic Control
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
12
), p.
124503
.10.1115/1.4037284
24.
Veltkamp
,
R. C.
,
1992
, “
Survey of Continuities of Curves and Surfaces
,”
Comput. Graph. Forum
,
11
(
2
), pp.
93
112
.10.1111/1467-8659.1120093
25.
Bishop
,
R. L.
,
1975
, “
There is More Than One Way to Frame a Curve
,”
Am. Math. Mon.
,
82
(
3
), pp.
246
251
.10.1080/00029890.1975.11993807
26.
Wang
,
W.
,
J¨uttler
,
B.
,
Zheng
,
D.
, and
Liu
,
Y.
,
2008
, “
Computation of Rotation Minimizing Frames
,”
ACM Trans. Graph. (TOG
),
27
(
1
), pp.
1
18
.10.1145/1330511.1330513
27.
Wen
,
Y.
,
Hu
,
J.
, and
Pagilla
,
P. R.
,
2019
, “
A Novel Robotic System for Finishing of Freeform Surfaces
,”
International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
, May 20--24, pp.
5571
5577
.10.1109/ICRA.2019.8793734
28.
Chen
,
S.-L.
, and
Chou
,
C.-Y.
,
2016
, “
Contouring Control of Multi-Axis Motion Systems for Nurbs Paths
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
2
), pp.
1062
1071
.10.1109/TASE.2015.2479655
29.
Barnett
,
E.
, and
Gosselin
,
C.
,
2015
, “
Timeoptimal Trajectory Planning of Cable-Driven Parallel Mechanisms for Fully Specified Paths With g 1- Discontinuities
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
7
), p. 071007.10.1115/1.4029769
30.
Zhang
,
T.
,
Ge
,
P.
,
Zou
,
Y.
, and
He
,
Y.
,
2021
, “
Robot Collision Detection Without External Sensors Based on Time-Series Analysis
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
4
), p.
041005
.10.1115/1.4048782
31.
Wen
,
Y.
, and
Pagilla
,
P.
,
2021
, “
A Novel Path Following Control Framework for Robot Manipulators Using a Rotation Minimizing Frame
,” 60th IEEE Conference on Decision and Control (
CDC
),
Austin, TX
, Dec. 14--17, pp.
2137
2142
.10.1109/CDC45484.2021.9683563
32.
Wang
,
H.
,
Kearney
,
J.
, and
Atkinson
,
K.
,
2002
, “
Arc-Length Parameterized Spline Curves for Realtime Simulation
,”
Proceedings of Fifth International Conference on Curves and Surfaces
, Saint-Malo, France, June, pp. 397–406.https://homepage.divms.uiowa.edu/~kearney/pubs/CurvesAndSurfacesArcLength.pdf
33.
Xu
,
W.
,
2016
, “
Robotic Time-Varying Force Tracking in Position-Based Impedance Control
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
9
), p.
091008
.10.1115/1.4033409
34.
Pagilla
,
P. R.
, and
Yu
,
B.
,
2001
, “
Robotic Surface Finishing Processes: Modeling, Control, and Experiments
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
1
), pp.
93
102
.10.1115/1.1344881
35.
Do Carmo
,
M. P.
,
2016
,
Differential Geometry of Curves and Surfaces: Revised and Updated
, 2nd ed.,
Courier Dover Publications
, New York.
36.
Pressley
,
A.
,
2010
, “
Elementary Differential Geometry Springer Science
,” Dover Publications, New York.
37.
Sadeghian
,
H.
,
Villani
,
L.
,
Keshmiri
,
M.
, and
Siciliano
,
B.
,
2014
, “
Task-Space Control of Robot Manipulators With Null-Space
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
493
506
.10.1109/TRO.2013.2291630
38.
Yuan
,
J.
,
1988
, “
Closed-Loop Manipulator Control Using Quaternion Feedback
,”
IEEE J. Rob. Autom.
,
4
(
4
), pp.
434
440
.10.1109/56.809
39.
Khatib
,
O.
,
1987
, “
A Unified Approach for Motion and Force Control of Robot Manipulators: The Operational Space Formulation
,”
IEEE J. Rob. Autom.
,
3
(
1
), pp.
43
53
.10.1109/JRA.1987.1087068
You do not currently have access to this content.