Abstract

The dynamic parameter identification is playing an important role in robot dynamic controller design. However, many excitation trajectories for parameter identification cannot cover enough motion states of the robot joints, which weakens the generalization of the dynamic model. In this paper, an excitation trajectory covering multi-axis motion states based on depth-first search (DFS) is proposed and spliced from logistic functions, in which the angular velocity and angular acceleration can be directly obtained from joint angle by the analytical formula. Taking the condition number of observation matrix as an optimization index, the excitation trajectory is optimized based on genetic algorithm. The strategy of iterative identification is adopted, and in each iteration the dynamic parameters are identified according to the last position and torque sequences and updated to the controller until the actual trajectory approaches the desired trajectory. Experimental results show that after two iterations, the tracking accuracy is greatly improved, and the effectiveness of the proposed approach is verified.

References

1.
Cvitanic
,
T.
,
Nguyen
,
V.
, and
Melkote
,
N. S.
,
2020
, “
Pose Optimization in Robotic Machining Using Static and Dynamic Stiffness Models
,”
Rob. Comput.-Integr. Manuf.
,
66
, p.
101992
.10.1016/j.rcim.2020.101992
2.
Zamora-Ortiz
,
P.
,
Carral-Alvaro
,
J.
,
Valera
,
Á.
,
Pulloquinga
,
L. J.
,
Escarabajal
,
R. J.
, and
Mata
,
V.
,
2021
, “
Identification of Inertial Parameters for Position and Force Control of Surgical Assistance Robots
,”
Mathematics
,
9
(
7
), p.
773
.10.3390/math9070773
3.
Gaz
,
C.
,
Cognetti
,
M.
,
Oliva
,
A.
,
Giordano
,
P. R.
, and
Luca
,
D. A.
,
2019
, “
Dynamic Identification of the Franka Emika Panda Robot With Retrieval of Feasible Parameters Using Penalty-Based Optimization
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4147
4154
.10.1109/LRA.2019.2931248
4.
Chang
,
P.
, and
Padır
,
T.
,
2020
, “
Model-Based Manipulation of Linear Flexible Objects: Task Automation in Simulation and Real World
,”
Machines
,
8
(
3
), p.
46
.10.3390/machines8030046
5.
Armstrong
,
B.
,
1989
, “
On Finding Exciting Trajectories for Identification Experiments Involving Systems With Nonlinear Dynamics
,”
Int. J. Rob. Res.
,
8
(
6
), pp.
28
48
.10.1177/027836498900800603
6.
Gautier
,
M.
, and
Khalil
,
W.
,
1992
, “
Exciting Trajectories for the Identification of Base Inertial Parameters of Robots
,”
Int. J. Rob. Res.
,
11
(
4
), pp.
362
375
.10.1177/027836499201100408
7.
Swevers
,
J.
,
Ganseman
,
C.
,
Schutter
,
J. D.
, and
Brussel
,
H. V.
,
1996
, “
Experimental Robot Identification Using Optimised Periodic Trajectories
,”
Mech. Syst. Signal Process.
,
10
(
5
), pp.
561
577
.10.1006/mssp.1996.0039
8.
Thanh
,
T. D.
,
Kotlarski
,
J.
,
Heimann
,
B.
, and
Ortmaier
,
T.
,
2012
, “
Dynamics Identification of Kinematically Redundant Parallel Robots Using the Direct Search Method
,”
Mech. Mach. Theory
,
52
, pp.
277
295
.10.1016/j.mechmachtheory.2012.02.002
9.
Swevers
,
J.
,
Verdonck
,
W.
, and
Schutter
,
J. D.
,
2007
, “
Dynamic Model Identification for Industrial Robots
,”
IEEE Control Syst. Mag.
,
27
(
5
), pp.
58
71
.10.1109/MCS.2007.904659
10.
Volkmann
,
B.
,
Kaczor
,
D.
,
Tantau
,
M.
,
Schappler
,
M.
, and
Ortmaier
,
T.
,
2020
, “
Sensitivity-Based Model Reduction for In-Process Identification of Industrial Robots Inverse Dynamics
,”
2020 IEEE International Conference on Mechatronics and Automation (ICMA)
, Beijing, China, Oct. 13–16, pp.
912
919
.
11.
Zhang
,
T.
,
Xu
,
J.
, and
Zou
,
Y.
,
2022
, “
A Backpropagation Learning Method for Dynamic Parameter Identification of Industrial Robots
,”
ASME J. Comput. Nonlinear Dyn.
,
17
(
6
), p.
061006
.10.1115/1.4053934
12.
Tika
,
A.
,
Ulmen
,
J.
, and
Bajcinca
,
N.
,
2020
, “
Dynamic Parameter Estimation Utilizing Optimized Trajectories
,”
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Las Vegas, NV, Oct. 25–29, pp.
7300
7307
.
13.
Xu
,
T.
,
Fan
,
J.
,
Fang
,
Q.
,
Zhu
,
Y.
, and
Zhao
,
J.
,
2022
, “
An Accurate Identification Method Based on Double Weighting for Inertial Parameters of Robot Payloads
,”
Robotica
,
40
(
12
), pp.
4358
4374
.10.1017/S0263574722000960
14.
Ayvaci
,
O.
,
Szulczynski
,
P.
, and
Kielczewski
,
M.
,
2022
, “
Identifying Dynamic Parameters With a Novel Software Design for the M-DoF Collaborative Robot
,”
IEEE Access
,
10
, pp.
24627
24637
.10.1109/ACCESS.2022.3151070
15.
Liu
,
S.
,
Wang
,
L.
, and
Wang
,
X. V.
,
2021
, “
Sensorless Force Estimation for Industrial Robots Using Disturbance Observer and Neural Learning of Friction Approximation
,”
Rob. Comput.-Integr. Manuf.
,
71
, p.
102168
.10.1016/j.rcim.2021.102168
16.
Huynh
,
H. N.
,
Assadi
,
H.
,
Rivière-Lorphèvre
,
E.
,
Verlinden
,
O.
, and
Ahmadi
,
K.
,
2020
, “
Modelling the Dynamics of Industrial Robots for Milling Operations
,”
Rob. Comput.-Integr. Manuf.
,
61
, p.
101852
.10.1016/j.rcim.2019.101852
17.
Wang
,
Y.
, and
Wang
,
Q.
,
2020
, “
Dynamic Parameter Identification of Flexible Joint Robot Based on Adaptive Particle Swarm Optimization Genetic Algorithm
,”
Acta Metrol. Sin.
,
41
(
1
), pp.
60
66
.https://link.oversea.cnki.net/doi/10.3969/j.issn.1000-1158.2020.01.12
18.
Wang
,
Z.
,
Liu
,
X.
,
Xia
,
Z.
,
Yu
,
X.
,
Pei
,
Z.
, and
Yang
,
J.
,
2024
, “
Development of a New Cable-Driven Planar Parallel Continuum Robot Using Compound Kinematic Calibration Method
,”
ASME J. Mech. Rob.
,
16
(
10
), p.
101014
.10.1115/1.4064670
19.
Bargsten
,
V.
,
Fernandez
,
J. D. G.
, and
Kassahun
,
Y.
,
2016
, “
Experimental Robot Inverse Dynamics Identification Using Classical and Machine Learning Techniques
,”
Proceedings of ISR 2016: 47st International Symposium on Robotics
, Munich, Germany, June 21–22, pp.
1
6
.
20.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95—International Conference on Neural Networks
, Perth, WA, Australia, Nov. 27–Dec. 01, pp.
1942
1948
.
21.
Zhang
,
P.
, and
Zhang
,
J.
,
2022
, “
Lower Limb Exoskeleton Robots' Dynamics Parameters Identification Based on Improved Beetle Swarm Optimization Algorithm
,”
Robotica
,
40
(
8
), pp.
2716
2731
.10.1017/S0263574721001922
22.
Wu
,
W.
,
Zhu
,
S.
,
Wang
,
X.
, and
Liu
,
H.
,
2012
, “
Closed-Loop Dynamic Parameter Identification of Robot Manipulators Using Modified Fourier Series
,”
Int. J. Adv. Rob. Syst.
,
9
(
1
), p.
29
.10.5772/45818
23.
Du
,
Z.
,
Iravani
,
P.
, and
Sahinkaya
,
M. N.
,
2014
, “
A New Approach to Design Optimal Excitation Trajectories for Parameter Estimation of Robot Dynamics
,”
2014 UKACC International Conference on Control (CONTROL)
, Loughborough, UK, July 9–11, pp.
389
394
.
24.
Cooper
,
E.
,
Huang
,
W. C.
,
Toda
,
T.
, and
Yamagishi
,
J.
,
2022
, “
Generalization Ability of MOS Prediction Networks
,”
ICASSP 2022—2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
, Singapore, May 23–27, pp.
8442
8446
.
25.
Wang
,
S.
,
Shao
,
X.
,
Yang
,
L.
, and
Liu
,
N.
,
2020
, “
Deep Learning Aided Dynamic Parameter Identification of 6-DOF Robot Manipulators
,”
IEEE Access
,
8
, pp.
138102
138116
.10.1109/ACCESS.2020.3012196
26.
Golluccio
,
G.
,
Gillini
,
G.
,
Marino
,
A.
, and
Antonelli
,
G.
,
2021
, “
Robot Dynamics Identification: A Reproducible Comparison With Experiments on the Kinova Jaco
,”
IEEE Rob. Autom. Mag.
,
28
(
3
), pp.
128
140
.10.1109/MRA.2020.3004149
27.
Xiao
,
J.
,
Zeng
,
F.
,
Zhang
,
Q.
, and
Liu
,
H.
,
2019
, “
Research on the Forcefree Control of Cooperative Robots Based on Dynamic Parameters Identification
,”
Ind. Rob.
,
46
(
4
), pp.
499
509
.10.1108/IR-01-2019-0007
28.
Kinsheel
,
A.
,
Taha
,
Z.
,
Deboucha
,
A.
, and
Ya
,
T.
,
2012
, “
Robust Least Square Estimation of the CRS A465 Robot Arm's Dynamic Model Parameters
,”
J. Mech. Eng. Res.
,
4
(
3
), pp.
88
89
.10.5897/JMER11.061
29.
Gautier
,
M.
,
Janot
,
A.
, and
Vandanjon
,
P. O.
,
2013
, “
A New Closed-Loop Output Error Method for Parameter Identification of Robot Dynamics
,”
IEEE Trans. Control Syst. Technol.
,
21
(
2
), pp.
428
444
.10.1109/TCST.2012.2185697
30.
Brunot
,
M.
,
Janot
,
A.
,
Carrillo
,
F.
,
Cheong
,
J.
, and
Noël
,
J. P.
,
2020
, “
Output Error Methods for Robot Identification
,”
ASME J. Dyn. Syst., Meas. Control
,
142
(
3
), p.
031002
.10.1115/1.4045430
31.
Mayeda
,
H.
,
Yoshida
,
K.
, and
Osuka
,
K.
,
1990
, “
Base Parameters of Manipulator Dynamic Models
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
312
321
.10.1109/70.56663
32.
Kawasaki
,
H.
, and
Kanzaki
,
K.
,
1991
, “
Minimum Dynamics Parameters of Robot Models
,”
IFAC Proc. Vol.
,
24
(
9
), pp.
33
38
.10.1016/S1474-6670(17)51028-9
33.
Huo
,
W.
,
1995
, “
New Formulas for Complete Determining Base Parameters of Robots
,”
IEEE International Conference on Robotics and Automation
, Nagoya, Japan, May 21–27, pp.
3021
3026
.
34.
Ding
,
Y.
,
2015
, “
Identification of Dynamic Parameters of Industrial Robots
,” M.Sc. thesis,
Nanjing University of Aeronautics and Astronautics
,
Nanjing, Jiangsu, China
.
You do not currently have access to this content.