Abstract

Aiming at the nonlinear and dynamic characteristics of data in automotive engine systems, a fault detection method based on canonical variate analysis combined with Bhattacharyya distance (CVA-BD) is proposed in this paper. First, CVA is utilized to calculate the state space of the system data. Second, a sliding window is introduced in the state space to quantify the difference in data distribution within the window using Bhattacharyya distance, thereby constructing a novel statistical indicator. Finally, the control limit for statistical indicator is determined to achieve process monitoring of automotive engine systems. CVA-BD effectively enhances the performance of process monitoring by capturing the sequential correlation of data through CVA and eliminating the nonlinear impact between samples using similarity measurement metrics. Simulation experiments are conducted using a numerical case and experimental data from turbocharged spark ignition (TCSI) engines. The simulation results further confirm that, compared with principal component analysis (PCA), dynamic principal component analysis (DPCA), canonical variable analysis (CVA), dissimilar canonical variable analysis (CVDA), auto-encoder (AE), and stacked auto-encoder (SAE) CVA-BD has demonstrated an improvement of at least 41%.

References

1.
Abboush
,
M.
,
Bamal
,
D.
,
Knieke
,
C.
, and
Rausch
,
A.
,
2022
, “
Intelligent Fault Detection and Classification Based on Hybrid Deep Learning Methods for Hardware-in-the-Loop Test of Automotive Software Systems
,”
Sensors
,
22
(
11
), p.
4066
.10.3390/s22114066
2.
Shang
,
L.
,
Liu
,
J.
, and
Zhang
,
Y.
,
2017
, “
Efficient Recursive Canonical Variate Analysis Approach for Monitoring Time-Varying Processes
,”
J. Chemom.
,
31
(
1
), p.
e2858
.10.1002/cem.2858
3.
Fan
,
S.
,
Zhang
,
X.
, and
Song
,
Z.
,
2022
, “
Imbalanced Sample Selection With Deep Reinforcement Learning for Fault Diagnosis
,”
IEEE Trans. Ind. Inform.
,
18
(
4
), pp.
2518
2527
.10.1109/TII.2021.3100284
4.
de Almeida
,
V. E.
,
de Sousa Fernandes
,
D. D.
,
Diniz
,
P. H. G. D.
,
de Araújo Gomes
,
A.
,
Véras
,
G.
,
Galvão
,
R. K. H.
, and
Araujo
,
M. C. U.
,
2021
, “
Scores Selection Via Fisher's Discriminant Power in PCA-LDA to Improve the Classification of Food Data
,”
Food Chem.
,
363
, p.
130296
.10.1016/j.foodchem.2021.130296
5.
Tang
,
Y.
,
Shang
,
L.
,
Zhang
,
R.
,
Li
,
J.
, and
Fu
,
H.
,
2024
, “
Hybrid Divergence Based on Mean Absolute Scaled Error for Incipient Fault Detection
,”
Eng. Appl. Artif. Intell.
,
129
, p.
107662
.10.1016/j.engappai.2023.107662
6.
Gao
,
L.
,
Li
,
D.
,
Liu
,
X.
, and
Liu
,
G.
,
2022
, “
Enhanced Chiller Faults Detection and Isolation Method Based on Independent Component Analysis and k-Nearest Neighbors Classifier
,”
Build. Environ.
,
216
, p.
109010
.10.1016/j.buildenv.2022.109010
7.
Ma
,
X.
,
Wu
,
D.
,
Gao
,
S.
,
Hou
,
T.
, and
Wang
,
Y.
,
2023
, “
Autocorrelation Feature Analysis for Dynamic Process Monitoring of Thermal Power Plants
,”
IEEE Trans. Cybern.
,
53
(
8
), pp.
5387
5399
.10.1109/TCYB.2022.3228861
8.
Navarro-Acosta
,
J. A.
,
García-Calvillo
,
I. D.
, and
Reséndiz-Flores
,
E. O.
,
2022
, “
Fault Detection Based on Squirrel Search Algorithm and Support Vector Data Description for Industrial Processes
,”
Soft Comput.
,
26
(
24
), pp.
13639
13650
.10.1007/s00500-022-07337-9
9.
Zhao
,
Y. P.
,
Xie
,
Y. L.
, and
Ye
,
Z. F.
,
2021
, “
A New Dynamic Radius SVDD for Fault Detection of Aircraft Engine
,”
Eng. Appl. Artif. Intell.
,
100
, p.
104177
.10.1016/j.engappai.2021.104177
10.
Sun
,
H.
,
Guo
,
Y.
, and
Zhao
,
W.
,
2020
, “
Fault Detection for Aircraft Turbofan Engine Using a Modified Moving Window KPCA
,”
IEEE Access
,
8
, pp.
166541
166552
.10.1109/ACCESS.2020.3022771
11.
Xi
,
W.
,
Li
,
Z.
,
Tian
,
Z.
, and
Duan
,
Z.
,
2018
, “
A Feature Extraction and Visualization Method for Fault Detection of Marine Diesel Engines
,”
Measurement
,
116
, pp.
429
437
.10.1016/j.measurement.2017.11.035
12.
Chaudhuri
,
A.
,
Sadek
,
C.
,
Kakde
,
D.
,
Wang
,
H.
,
Hu
,
W.
,
Jiang
,
H.
,
Kong
,
S.
,
Liao
,
Y.
, and
Peredriy
,
S.
,
2021
, “
The Trace Kernel Bandwidth Criterion for Support Vector Data Description
,”
Pattern Recogn.
,
111
, p.
107662
.10.1016/j.patcog.2020.107662
13.
Zhang
,
Q.
,
Li
,
P.
,
Lang
,
X.
, and
Miao
,
A.
,
2020
, “
Improved Dynamic Kernel Principal Component Analysis for Fault Detection
,”
Measurement
,
158
, p.
107738
.10.1016/j.measurement.2020.107738
14.
Wu
,
P.
,
Lou
,
S.
,
Zhang
,
X.
,
He
,
J.
,
Liu
,
Y.
, and
Gao
,
J.
,
2021
, “
Data-Driven Fault Diagnosis Using Deep Canonical Variate Analysis and Fisher Discriminant Analysis
,”
IEEE Trans. Ind. Inform.
,
17
(
5
), pp.
3324
3334
.10.1109/TII.2020.3030179
15.
Le Roux
,
N.
, and
Gardner-Lubbe
,
S.
,
2024
, “
A Two-Group Canonical Variate Analysis Biplot for an Optimal Display of Both Means and Cases
,”
Adv. Data Anal. Classif.
, pp.
1
28
.10.1007/s11634-024-00593-7
16.
Ma
,
L.
,
Li
,
X.
, and
Lei
,
C.
,
2017
, “
Process Monitoring of the Pneumatic Control Valve Using Canonical Variate Analysis
,” 2017 Chinese Automation Congress (
CAC)
, Jinan, China, Oct. 20–22, pp.
2784
2788
.10.1109/CAC.2017.8243249
17.
Odiowei
,
P. E. P.
, and
Cao
,
Y.
,
2010
, “
Nonlinear Dynamic Process Monitoring Using Canonical Variate Analysis and Kernel Density Estimations
,”
IEEE Trans. Ind. Inform.
,
6
(
1
), pp.
36
45
.10.1109/TII.2009.2032654
18.
Dong
,
J.
,
Jiang
,
L.
,
Zhang
,
C.
, and
Peng
,
K.
,
2022
, “
A Novel Quality-Related Incipient Fault Detection Method Based on Canonical Variate Analysis and Kullback-Leibler Divergence for Large-Scale Industrial Processes
,”
IEEE Trans. Instrum. Meas.
,
71
, pp.
1
10
.10.1109/TIM.2022.3199239
19.
Bhattacharyya
,
A.
,
1946
, “
On a Measure of Divergence Between Two Multinomial Populations
,”
Sankhyā: Indian J. Stat.
,
7
(
4
), pp.
401
406
.http://www.jstor.org/stable/25047882
20.
Gupta
,
S.
,
Thakar
,
U.
, and
Tokekar
,
S.
,
2022
, “
Similarity Distance-Based Kernel Canonical Correlation Analysis for Multiview Data Representation
,”
Proceedings of International Conference on Data Science and Applications
,
Springer
,
Kolkata, India
, Apr. 10–11, 2021, pp.
649
660
.10.1007/978-981-16-5348-3_52
21.
Gupta
,
S.
,
Thakar
,
U.
, and
Tokekar
,
S.
,
2021
, “
Canonical Correlation Analysis With Bhattacharya Similarity Distance for Multiview Data Representation
,”
2020 Proceedings of SocProS on Soft Computing for Problem Solving
,
Springer
,
Indore, India
, Dec. 18–20, pp.
505
516
.10.1007/978-981-16-2712-5_41
22.
Pilario
,
K. E. S.
, and
Cao
,
Y.
,
2018
, “
Canonical Variate Dissimilarity Analysis for Process Incipient Fault Detection
,”
IEEE Trans. Ind. Inform.
,
14
(
12
), pp.
5308
5315
.10.1109/TII.2018.2810822
23.
Wu
,
P.
,
Ferrari
,
R. M. G.
,
Liu
,
Y.
, and
van Wingerden
,
J.-W.
,
2021
, “
Data-Driven Incipient Fault Detection Via Canonical Variate Dissimilarity and Mixed Kernel Principal Component Analysis
,”
IEEE Trans. Ind. Inform.
,
17
(
8
), pp.
5380
5390
.10.1109/TII.2020.3029900
24.
Jang
,
K.
,
Hong
,
S.
,
Kim
,
M.
,
Na
,
J.
, and
Moon
,
I.
,
2022
, “
Adversarial Autoencoder Based Feature Learning for Fault Detection in Industrial Processes
,”
IEEE Trans. Ind. Inform.
,
18
(
2
), pp.
827
834
.10.1109/TII.2021.3078414
25.
Qian
,
J.
,
Song
,
Z.
,
Yao
,
Y.
,
Zhu
,
Z.
, and
Zhang
,
X.
,
2022
, “
A Review on Autoencoder Based Representation Learning for Fault Detection and Diagnosis in Industrial Processes
,”
Chemometr. Intell. Lab. Syst.
,
231
, p.
104711
.10.1016/j.chemolab.2022.104711
26.
Yu
,
W.
, and
Zhao
,
C.
,
2021
, “
Low-Rank Characteristic and Temporal Correlation Analytics for Incipient Industrial Fault Detection With Missing Data
,”
IEEE Trans. Ind. Inform.
,
17
(
9
), pp.
6337
6346
.10.1109/TII.2020.2990975
27.
Das
,
R. S.
,
1965
, “
An Application of Factor and Canonical Analysis to Multivariate 1
,”
Br. J. Math. Stat. Psychol.
,
18
(
1
), pp.
57
69
.10.1111/j.2044-8317.1965.tb00693.x
28.
Jiang
,
Q.
, and
Yan
,
X.
,
2019
, “
Learning Deep Correlated Representations for Nonlinear Process Monitoring
,”
IEEE Trans. Ind. Inform.
,
15
(
12
), pp.
6200
6209
.10.1109/TII.2018.2886048
29.
Flores
,
J. L.
,
Calvo
,
B.
, and
Perez
,
A.
,
2019
, “
Supervised Non-Parametric Discretization Based on Kernel Density Estimation
,”
Pattern Recogn. Lett.
,
128
, pp.
496
504
.10.1016/j.patrec.2019.10.016
30.
Weng
,
H.
,
Chen
,
H.
,
Wu
,
L.
,
Huang
,
J.
, and
Li
,
Z.
,
2021
, “
A Novel Pilot Protection Scheme for Transmission Lines Based on Current Distribution Histograms and Their Bhattacharyya Coefficient
,”
Electr. Power Syst. Res.
,
194
, p.
107056
.10.1016/j.epsr.2021.107056
31.
Tang
,
J.
,
Cheng
,
J.
,
Xiang
,
D.
, and
Hu
,
C.
,
2022
, “
Large-Difference-Scale Target Detection Using a Revised Bhattacharyya Distance in SAR Images
,”
IEEE Geosci. Remote Sens. Lett.
,
19
, pp.
1
5
.10.1109/LGRS.2022.3161931
32.
Kini
,
K. R.
, and
Madakyaru
,
M.
,
2020
, “
Improved Process Monitoring Strategy Using Kantorovich Distance-Independent Component Analysis: An Application to Tennessee Eastman Process
,”
IEEE Access
,
8
, pp.
205863
205877
.10.1109/ACCESS.2020.3037730
33.
Li
,
N.
,
Shi
,
H.
,
Song
,
B.
, and
Tao
,
Y.
,
2020
, “
Temporal-Spatial Neighborhood Enhanced Sparse Autoencoder for Nonlinear Dynamic Process Monitoring
,”
Processes
,
8
(
9
), p.
1079
.10.3390/pr8091079
34.
Han
,
P.
,
Ellefsen
,
A. L.
,
Li
,
G.
,
Holmeset
,
F. T.
, and
Zhang
,
H.
,
2021
, “
Fault Detection With LSTM-Based Variational Autoencoder for Maritime Components
,”
IEEE Sens. J.
,
21
(
19
), pp.
21903
21912
.10.1109/JSEN.2021.3105226
35.
Yu
,
F.
,
Liu
,
J.
,
Liu
,
D.
,
Wang
,
H.
, and
Shang
,
L.
,
2023
, “
Feature Learning Based on Entropy Estimation Density Peak Clustering and Stacked Autoencoder for Industrial Process Monitoring
,”
Can. J. Chem. Eng.
,
101
(
7
), pp.
3998
4015
.10.1002/cjce.24750
36.
Shang
,
L.
,
Gu
,
Y.
,
Tang
,
Y.
,
Fu
,
H.
, and
Hua
,
L.
,
2023
, “
Recursive Ensemble Canonical Variate Analysis for Online Incipient Fault Detection in Dynamic Processes
,”
Measurement
,
220
, p.
113411
.10.1016/j.measurement.2023.113411
37.
Ng
,
K. Y.
,
Frisk
,
E.
,
Krysander
,
M.
, and
Eriksson
,
L.
,
2020
, “
A Realistic Simulation Testbed of a Turbocharged Spark-Ignited Engine System: A Platform for the Evaluation of Fault Diagnosis Algorithms and Strategies
,”
IEEE Control Syst.
,
40
(
2
), pp.
56
83
.10.1109/MCS.2019.2961793
38.
Yu
,
J.
, and
Yan
,
X.
,
2021
, “
A New Deep Model Based on the Stacked Autoencoder With Intensified Iterative Learning Style for Industrial Fault Detection
,”
Process Saf. Environ. Prot.
,
153
, pp.
47
59
.10.1016/j.psep.2021.07.002
39.
Zhang
,
Z.
,
2019
, “
Linear Canonical Wigner Distribution Based Noisy LFM Signals Detection Through the Output SNR Improvement Analysis
,”
IEEE Trans. Signal Process.
,
67
(
21
), pp.
5527
5542
.10.1109/TSP.2019.2941071
40.
Han
,
X.
,
Jiang
,
J.
,
Xu
,
A.
,
Huang
,
X.
,
Pei
,
C.
, and
Sun
,
Y.
,
2021
, “
Fault Detection of Pneumatic Control Valves Based on Canonical Variate Analysis
,”
IEEE Sens. J.
,
21
(
12
), pp.
13603
13615
.10.1109/JSEN.2021.3070035
You do not currently have access to this content.