Abstract

This study proposes a data-driven safety controller with velocity constraints for a cushion robot. We constructed a mathematical description of the human-machine interaction environment by decomposing the generalized input force and coefficient matrix in the dynamic model. We established a new equivalent data model, which considered various human-machine interaction environments using a pseudo-Jacobian matrix. A stochastic configuration network (SCN) estimation method for variations in the human-machine interaction environment was proposed, with hidden layer nodes added at random. We designed a safe autonomous navigation path and proposed a data-driven control method that limited the actual velocity while stabilizing the tracking error system. In addition, the desired motion velocity of the robot was designed. This approach has the advantage of ensuring safety at a specified velocity. We also demonstrated and validated the effectiveness of the proposed data-driven algorithm using simulation-based comparative analysis and an experimental study.

References

1.
Sun
,
P.
,
Shan
,
R.
, and
Wang
,
S. Y.
,
2022
, “
Safety-Triggered Stochastic Tracking Control for a Cushion Robot by Constraining Velocity Considering the Estimated Internal Disturbance
,”
Appl. Math. Comput.
,
416
, p.
126761
.10.1016/j.amc.2021.126761
2.
Zuo
,
Z. Q.
,
Yang
,
X.
,
Li
,
Z.
,
Wang
,
Y. J.
,
Han
,
Q. N.
,
Wang
,
L.
, and
Luo
,
X. Y.
,
2021
, “
MPC-Based Cooperative Control Strategy of Path Planning and Trajectory Tracking for Intelligent Vehicles
,”
IEEE Trans. Intell. Veh.
,
6
(
3
), pp.
513
522
.10.1109/TIV.2020.3045837
3.
Teame
,
W. G.
,
Wang
,
Z. M.
, and
Yu
,
Y. N.
,
2020
, “
Optimization of SLAM Gmapping Based on Simulation
,”
Int. J. Eng. Res. Technol.
,
9
(
4
), pp.
74
81
.https://www.semanticscholar.org/reader/c07514524528655b397b19f1596a71597b38bf3e
4.
Wang
,
J. K.
,
Meng
,
Q. H.
, and
Khatib
,
O.
,
2020
, “
EB-RRT: Optimal Motion Planning for Mobile Robots
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
4
), pp.
2063
2073
.10.1109/TASE.2020.2987397
5.
Molinos
,
E. J.
,
Llamazares
,
Á.
, and
Ocaña
,
M.
,
2019
, “
Dynamic Window Based Approaches for Avoiding Obstacles in Moving
,”
Rob. Auton. Syst.
,
118
, pp.
112
130
.10.1016/j.robot.2019.05.003
6.
Sun
,
P.
, and
Yu
,
Z.
,
2017
, “
Tracking Control for a Cushion Robot Based on Fuzzy Path Planning With Safe Angular Velocity
,”
IEEE/CAA J. Autom. Sin.
,
4
(
4
), pp.
610
619
.10.1109/JAS.2017.7510607
7.
Li
,
Z. J.
,
Li
,
G. X.
,
Wu
,
X. Y.
,
Kan
,
Z.
,
Su
,
H.
, and
Liu
,
Y. Y.
,
2022
, “
Asymmetric Cooperation Control of Dual-Arm Exoskeletons Using Human Collaborative Manipulation Models
,”
IEEE Trans. Cybern.
,
52
(
11
), pp.
12126
12139
.10.1109/TCYB.2021.3113709
8.
Li
,
X. H.
,
Ren
,
C.
,
Ma
,
S. G.
, and
Zhu
,
X. S.
,
2020
, “
Compensated Model-Free Adaptive Tracking Control Scheme for Autonomous Underwater Vehicles Via Extended State Observer
,”
Ocean Eng.
,
217
, p.
107976
.10.1016/j.oceaneng.2020.107976
9.
Sun
,
P.
,
Zhang
,
S.
,
Wang
,
S.
, and
Chang
,
H.
,
2020
, “
Nonfragile Predictive Control for an Omnidirectional Rehabilitative Training Walker With Constrains on the Tracking Errors of Position and Velocity
,”
Optim. Control Appl. Methods
,
41
(
5
), pp.
1749
1772
.10.1002/oca.2638
10.
Bao
,
L.
,
Kim
,
D.
,
Yi
,
S. J.
, and
Lee
,
J.
,
2021
, “
Design of a Sliding Mode Controller With Fuzzy Rules for a 4-DoF Service Robot
,”
Int. J. Control, Autom. Syst.
,
19
(
8
), pp.
2869
2881
.10.1007/s12555-020-0452-3
11.
Li
,
J. H.
,
Wang
,
J. Z.
,
Wang
,
S. K.
,
Peng
,
H.
,
Wang
,
B. M.
,
Qi
,
W.
,
Zhang
,
L. B.
, and
Su
,
H.
,
2020
, “
Parallel Structure of Six Wheel-Legged Robot Trajectory Tracking Control With Heavy Payload Under Uncertain Physical Interaction
,”
Assem. Autom.
,
40
(
5
), pp.
675
687
.10.1108/AA-08-2019-0148
12.
Fei
,
Y.
,
Shi
,
P.
,
Lim
,
C. P.
, and
Yuan
,
X.
,
2023
, “
Finite-Time Observer-Based Formation Tracking With Application to Omnidirectional Robots
,”
IEEE Trans. Ind. Electron.
,
70
(
10
), pp.
10598
10606
.10.1109/TIE.2022.3224186
13.
Pérez-San Lázaro
,
R.
,
Salgado
,
I.
, and
Chairez
,
I.
,
2021
, “
Adaptive Sliding-Mode Controller of a Lower Limb Mobile Exoskeleton for Active Rehabilitation
,”
ISA Trans.
,
109
, pp.
218
228
.10.1016/j.isatra.2020.10.008
14.
Hui
,
Y.
,
Chi
,
R. H.
,
Huang
,
B. A.
,
Hou
,
Z. S.
, and
Jin
,
S.
,
2021
, “
Observer-Based Sampled-Data Model-Free Adaptive Control for Continuous-Time Nonlinear Nonaffine Systems With Input Rate Constraints
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
51
(
12
), pp.
7813
7822
.10.1109/TSMC.2020.2982491
15.
Huang
,
J. H.
,
Chen
,
H.
, and
Shen
,
C.
,
2024
, “
Event-Triggered Model-Free Adaptive Control for Wheeled Mobile Robot With Time Delay and External Disturbance Based on Discrete-Time Extended State Observer
,”
ASME J. Dyn. Syst., Meas., Control
,
146
(
2
), p.
021005
.10.1115/1.4063996
16.
Che
,
H. H.
,
Chen
,
J.
,
Wang
,
Y. H.
,
Wang
,
J. Y.
, and
Luo
,
Y. H.
,
2022
, “
Data-Driven Model-Free Adaptive Attitude Control for Morphing Vehicles
,”
IET Control Theory Appl.
,
16
(
16
), pp.
1696
1707
.10.1049/cth2.12335
17.
Liu
,
F.
,
Li
,
H. T.
,
Liu
,
Q. Y.
,
Liu
,
K. Z.
, and
Li
,
D. Y.
,
2023
, “
Improved Data-Driven Model-Free Adaptive Damping Controller Design for Interconnected Power Systems With Stochastic Communication Delays
,”
IEEE Trans. Power Delivery
,
38
(
1
), pp.
692
702
.10.1109/TPWRD.2022.3197397
18.
Wang
,
Q.
,
Jin
,
S. T.
,
Hou
,
Z. S.
, and
Gao
,
G. Z.
,
2023
, “
Model-Free Adaptive and Iterative Learning Composite Control for Subway Train Under Actuator Faults
,”
Int. J. Robust Nonlinear Control
,
33
(
3
), pp.
1772
1784
.10.1002/rnc.6447
19.
Xiong
,
S. S.
, and
Hou
,
Z. S.
,
2022
, “
Data-Driven Formation Control for Unknown MIMO Nonlinear Discrete-Time Multi-Agent Systems With Sensor Fault
,”
IEEE Trans. Neural Networks Learn. Syst.
,
33
(
12
), pp.
7728
7742
.10.1109/TNNLS.2021.3087481
20.
Li
,
J. S.
,
Wang
,
S. X.
,
Hou
,
Z.-S.
, and
Zhao
,
J. C.
,
2022
, “
Multivariable Model-Free Adaptive Controller Design With Differential Characteristic for Load Reduction of Wind Turbines
,”
IEEE Trans. Energy Convers.
,
37
(
2
), pp.
1106
1114
.10.1109/TEC.2021.3125112
21.
Hou
,
Z. S.
, and
Jin
,
S. T.
,
2011
, “
Data-Driven Model-Free Adaptive Control for a Class of MIMO Nonlinear Discrete-Time Systems
,”
IEEE Trans. Neural Networks
,
22
(
12
), pp.
2173
2188
.10.1109/TNN.2011.2176141
22.
Qian
,
K.
,
Li
,
Z. H.
,
Zhang
,
Z. Q.
,
Li
,
G. Q.
, and
Xie
,
S. Q.
,
2023
, “
Data-Driven Adaptive Iterative Learning Control of a Compliant Rehabilitation Robot for Repetitive Ankle Training
,”
IEEE Rob. Autom. Lett.
,
8
(
2
), pp.
656
663
.10.1109/LRA.2022.3229570
23.
Goyal
,
T.
,
Hussain
,
S.
,
Martinez
,
E.
,
Brown
,
N. A. T.
, and
Jamwal
,
P. K.
,
2023
, “
Learning Koopman Embedding Subspaces for System Identification and Optimal Control of a Wrist Rehabilitation Robot
,”
IEEE Trans. Ind. Electron.
,
70
(
7
), pp.
7092
7101
.10.1109/TIE.2022.3203760
24.
Shan
,
R.
,
Sun
,
P.
,
Wang
,
S. Y.
, and
Chang
,
H. B.
,
2024
, “
Each Step Time-Limited Iterative Learning Control for a Cushion Robot With Motion Velocity Constraints
,”
Trans. Inst. Meas. Control
,
46
(
6
), pp.
1105
1119
.10.1177/01423312231190446
25.
Low
,
E. S.
,
Ong
,
P.
, and
Cheah
,
K. C.
,
2019
, “
Solving the Optimal Path Planning of a Mobile Robot Using Improved
,”
Rob. Auton. Syst.
,
115
, pp.
143
161
.10.1016/j.robot.2019.02.013
26.
Guo
,
X. W.
,
Peng
,
G. Z.
, and
Meng
,
Y. Y.
,
2022
, “
A Modified Q-Learning Algorithm for Robot Path Planning in a Digital Twin Assembly System
,”
Int. J. Adv. Manuf. Technol.
,
119
(
5–6
), pp.
3951
3961
.10.1007/s00170-021-08597-9
27.
Xu
,
L.
,
Cao
,
M. Y.
, and
Song
,
B. Y.
,
2022
, “
A New Approach to Smooth Path Planning of Mobile Robot Based on Quartic Bezier Transition Curve and Improved PSO Algorithm
,”
Neurocomputing
,
473
, pp.
98
106
.10.1016/j.neucom.2021.12.016
28.
Li
,
D. D.
,
Wang
,
L.
,
Cai
,
J. C.
,
Ma
,
K. K.
, and
Tan
,
T. L.
,
2023
, “
Research on Terminal Distance Index-Based Multi-Step Ant Colony Optimization for Mobile Robot Path Planning
,”
IEEE Trans. Autom. Sci. Eng.
,
20
(
4
), pp.
2321
2337
.10.1109/TASE.2022.3212428
29.
Li
,
J.
,
Liao
,
C. Y.
,
Zhang
,
W. J.
,
Fu
,
H. T.
, and
Fu
,
S. L.
,
2022
, “
UAV Path Planning Model Based on R5DOS Model Improved A-Star Algorithm
,”
Appl. Sci.
,
12
(
22
), p.
11338
.10.3390/app122211338
30.
Sun
,
P.
,
Wang
,
S. Y.
, and
Chang
,
H. B.
,
2021
, “
Tracking Control and Identification of Interaction Forces for a Rehabilitative Training Walker Whose Center of Gravity Randomly Shifts
,”
Int. J. Control
, 94(
5
), pp.
1143
1155
.10.1080/00207179.2019.1635271
31.
Sun
,
P.
,
Shan
,
R.
, and
Wang
,
S. Y.
,
2023
, “
An Intelligent Rehabilitation Robot With Passive and Active Direct Switching Training
,”
IEEE Rob. Autom. Mag.
,
30
(
1
), pp.
72
83
.10.1109/MRA.2022.3228490
32.
Li
,
Y. M.
,
Dong
,
S. J.
,
Li
,
K. W.
, and
Tong
,
S. C.
,
2023
, “
Fuzzy Adaptive Fault Tolerant Time-Varying Formation Control for Nonholonomic Multirobot Systems With Range Constraints
,”
IEEE Trans. Intell. Veh.
,
8
(
6
), pp.
3668
3679
.10.1109/TIV.2023.3264800
33.
Sun
,
P.
,
Shan
,
R.
,
Wang
,
S. Y.
, and
Chang
,
H. B.
,
2024
, “
Finite-Time Compensation Control With Dead-Zone Estimation for a Rehabilitative Walker Considering Internal Disturbance Forces
,”
ISA Trans.
,
152
, pp.
256
268
.10.1016/j.isatra.2024.07.007
34.
Heydari
,
M.
,
Darvishpoor
,
S.
,
Novinzadeh
,
A. B.
, and
Roshanian
,
J.
,
2024
, “
On the Performance of the Model-Free Adaptive Control for a Novel Moving-Mass Controlled Flying Robot
,”
J. Intell. Rob. Syst.
,
110
(
2
), p.
79
.10.1007/s10846-024-02107-1
You do not currently have access to this content.