Abstract

Vibrations such as bit-bouncing, stick–slip, and whirl motion can significantly reduce downhole drilling's performance and efficiency. These phenomena are likely to arise once the dynamical states of drilling fall into undesired operating regimes, as verified by both theoretical analyses and experimental studies. To effectively avoid such undesired operating conditions of a downhole drilling process, this paper introduces an advanced nonlinear state-constrained control method to formulate a setpoint tracking problem of high-order directional drilling dynamics under state constraints. These constraints are carefully defined using the field test results, and their shapes are in complex state-space regions, causing additional complexity to the control design. Moreover, unlike vertical drilling, the directional drilling system requires modeling of coupled axial and torsional dynamics with a higher degree-of-freedom (DOF). In this study, the proposed method will tackle these challenges by converting the original high-order constrained control problem into a standard nonlinear control problem. Leveraging on the linear parameter varying (LPV) method that is applied to the converted system, we can actively prevent drilling from falling into the undesired regimes, to achieve the constrained control objective.

References

1.
Jelacic
,
A.
,
Fortuna
,
R.
,
LaSala
,
R.
,
Nathwani
,
J.
,
Nix
,
G.
,
Visser
,
C.
,
Green
,
B.
, et al.,
2008
, “
An Evaluation of Enhanced Geothermal Systems Technology
,” Office of Energy Efficiency and Renewable Energy (EERE), Washington, DC, Report No.
1219317
.https://www1.eere.energy.gov/geothermal/pdfs/evaluation_egs_tech_2008.pdf
2.
Tavares
,
F.
,
2019
, “
NASA Is Testing a Drill to Search for Life on Mars—On Its Own
,” NASA, Mountain View, CA, accessed Sept. 24, 2024, https://www.nasa.gov/feature/ames/arads-drill
3.
Wu
,
X.
,
Paez
,
L. C.
,
Partin
,
U. T.
, and
Agnihotri
,
M.
,
2010
, “
Decoupling Stick/Slip and Whirl to Achieve Breakthrough in Drilling Performance
,”
IADC/SPE Drilling Conference and Exhibition
, New Orleans, LA, Feb. 2–4, pp.
966
978
.10.2118/128767-MS
4.
Mihajlovic
,
N.
,
Van Veggel
,
A.
,
Van De Wouw
,
N.
, and
Nijmeijer
,
H.
,
2004
, “
Analysis of Friction-Induced Limit Cycling in an Experimental Drill-String System
,”
ASME J. Dyn. Syst., Meas., Control
,
126
(
4
), pp.
709
720
.10.1115/1.1850535
5.
Yigit
,
A. S.
, and
Christoforou
,
A. P.
,
2006
, “
Stick-Slip and Bit-Bounce Interaction in Oil-Well Drillstrings
,”
ASME J. Energy Resour. Technol.
,
128
(
4
), pp.
268
274
.10.1115/1.2358141
6.
Navarro-López
,
E. M.
, and
Licéaga-Castro
,
E.
,
2009
, “
Non-Desired Transitions and Sliding-Mode Control of a Multi-DOF Mechanical System With Stick-Slip Oscillations
,”
Chaos, Solitons Fractals
,
41
(
4
), pp.
2035
2044
.10.1016/j.chaos.2008.08.008
7.
Nandakumar
,
K.
, and
Wiercigroch
,
M.
,
2013
, “
Stability Analysis of a State Dependent Delayed, Coupled Two DOF Model of Drill-String Vibration
,”
J. Sound Vib.
,
332
(
10
), pp.
2575
2592
.10.1016/j.jsv.2012.12.020
8.
Besselink
,
B.
,
Vromen
,
T.
,
Kremers
,
N.
, and
Van De Wouw
,
N.
,
2016
, “
Analysis and Control of Stick-Slip Oscillations in Drilling Systems
,”
IEEE Trans. Control Syst. Technol.
,
24
(
5
), pp.
1582
1593
.10.1109/TCST.2015.2502898
9.
Ritto
,
T. G.
, and
Ghandchi-Tehrani
,
M.
,
2019
, “
Active Control of Stick-Slip Torsional Vibrations in Drill-Strings
,”
J. Vib. Control
,
25
(
1
), pp.
194
202
.10.1177/1077546318774240
10.
Sarker
,
M. M.
,
Rideout
,
D. G.
, and
Butt
,
S. D.
,
2012
, “
Advantages of an LQR Controller for Stick-Slip and Bit-Bounce Mitigation in an Oilwell Drillstring
,”
ASME
Paper No. IMECE2012-87856.10.1115/IMECE2012-87856
11.
Vromen
,
T.
,
Dai
,
C.-H.
,
van de Wouw
,
N.
,
Oomen
,
T.
,
Astrid
,
P.
,
Doris
,
A.
, and
Nijmeijer
,
H.
,
2019
, “
Mitigation of Torsional Vibrations in Drilling Systems: A Robust Control Approach
,”
IEEE Trans. Control Syst. Technol.
,
27
(
1
), pp.
249
265
.10.1109/TCST.2017.2762645
12.
Kim
,
J.
, and
Myung
,
H.
,
2017
, “
Development of a Novel Hybrid-Type Rotary Steerable System for Directional Drilling
,”
IEEE Access
,
5
, pp.
24678
24687
.10.1109/ACCESS.2017.2768389
13.
Zhao
,
Y.
,
Zalluhoglu
,
U.
,
Marck
,
J.
,
Demirer
,
N.
, and
Morari
,
M.
,
2019
, “
Model Predictive Control for Mud Motor Operation in Directional Drilling
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
5197
5202
.10.23919/ACC.2019.8815289
14.
Demirer
,
N.
,
Zalluhoglu
,
U.
,
Marck
,
J.
,
Darbe
,
R.
, and
Morari
,
M.
,
2019
, “
Autonomous Directional Drilling With Rotary Steerable Systems
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
5203
5208
.10.23919/ACC.2019.8814644
15.
Panchal
,
N.
,
Bayliss
,
M. T.
, and
Whidborne
,
J. F.
,
2012
, “
Attitude Control System for Directional Drilling Bottom Hole Assemblies
,”
IET Control Theory Appl.
,
6
(
7
), pp.
884
892
.10.1049/iet-cta.2011.0438
16.
He
,
W.
,
Ge
,
S. S.
,
How
,
B. V. E.
,
Choo
,
Y. S.
, and
Hong
,
K. S.
,
2011
, “
Robust Adaptive Boundary Control of a Flexible Marine Riser With Vessel Dynamics
,”
Automatica
,
47
(
4
), pp.
722
732
.10.1016/j.automatica.2011.01.064
17.
He
,
W.
, and
Ge
,
S. S.
,
2016
, “
Cooperative Control of a Nonuniform Gantry Crane With Constrained Tension
,”
Automatica
,
66
, pp.
146
154
.10.1016/j.automatica.2015.12.026
18.
Ghasemloonia
,
A.
,
Rideout
,
D. G.
, and
Butt
,
S. D.
,
2014
, “
Analysis of Multi-Mode Nonlinear Coupled Axial-Transverse Drillstring Vibration in Vibration Assisted Rotary Drilling
,”
J. Pet. Sci. Eng.
,
116
, pp.
36
49
.10.1016/j.petrol.2014.02.014
19.
Tian
,
D.
, and
Song
,
X.
,
2022
, “
Control of a Downhole Drilling System Using an Integral Barrier Lyapunov Function Based Method
,”
Int. J. Control
,
95
(
12
), pp.
3182
3195
.10.1080/00207179.2021.1961021
20.
Tee
,
K. P.
,
Ge
,
S. S.
, and
Tay
,
E. H.
,
2009
, “
Barrier Lyapunov Functions for the Control of Output-Constrained Nonlinear Systems
,”
Automatica
,
45
(
4
), pp.
918
927
.10.1016/j.automatica.2008.11.017
21.
Blanchini
,
F.
,
1999
, “
Set Invariance in Control
,”
Automatica
,
35
(
11
), pp.
1747
1767
.10.1016/S0005-1098(99)00113-2
22.
Tian
,
D.
, and
Song
,
X.
,
2019
, “
Control of a Downhole Drilling System Using Integral Barrier Lyapunov Functionals
,”
American Control Conference (ACC)
, Philadelphia, PA, July 10–12, pp.
1349
1354
.10.23919/ACC.2019.8815370
23.
Liao
,
C.
,
Balachandran
,
B.
,
Karkoub
,
M.
, and
Abdel-Magid
,
Y. L.
,
2011
, “
Drill-String Dynamics: Reduced-Order Models and Experimental Studies
,”
ASME J. Vib. Acoust.
,
133
(
4
), p.
041008
.10.1115/1.4003406
24.
Liu
,
X.
,
Vlajic
,
N.
,
Long
,
X.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Nonlinear Motions of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
61
77
.10.1007/s11071-012-0690-x
25.
Wang
,
N.
,
Cheng
,
Z.
,
Lu
,
Y.
,
Jiang
,
W.
,
Zhou
,
J.
,
He
,
B.
, and
Ren
,
G.
,
2015
, “
A Multibody Dynamics Model of Contact Between the Drillstring and the Wellbore and the Rock Penetration Process
,”
Adv. Mech. Eng.
,
7
(
5
), p.
168781401558211
.10.1177/1687814015582117
26.
Zhang
,
Y.
,
Ashok
,
P.
,
Chen
,
D.
, and
van Oort
,
E.
,
2024
, “
Coupled Drillstring Dynamics Modeling Using 3D Field-Consistent Corotational Beam Elements
,”
Geoenergy Sci. Eng.
,
233
, p.
212424
.10.1016/j.geoen.2023.212424
27.
Wu
,
A.
,
Hareland
,
G.
, and
Fazaelizadeh
,
M.
,
2011
, “
Torque & Drag Analysis Using Finite Element Method
,”
Mod. Appl. Sci.
,
5
(
6
), p.
13
.10.5539/mas.v5n6p13
28.
Ke
,
C.
, and
Song
,
X.
,
2017
, “
Computationally Efficient Down-Hole Drilling System Dynamics Modeling Integrating Finite Element and Transfer Matrix
,”
ASME J. Dyn. Syst., Meas., Control
,
139
(
12
), p.
121003
.10.1115/1.4037165
29.
Liu
,
G.
, and
Quek
,
S.
,
2014
,
The Finite Element Method
,
Butterworth-Heinemann
,
Oxford, UK
.
30.
Jijón
,
R. B.
,
Canudas-de-Wit
,
C.
,
Niculescu
,
S. I.
, and
Dumon
,
J.
,
2010
, “
Adaptive Observer Design Under Low Data Rate Transmission With Applications to Oil Well Drill-String
,”
American Control Conference
, Baltimore, MD, June 30–July 2, pp.
1973
1978
.10.1109/ACC.2010.5531393
31.
Besselink
,
B.
,
Van De Wouw
,
N.
, and
Nijmeijer
,
H.
,
2011
, “
A Semi-Analytical Study of Stick-Slip Oscillations in Drilling Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
2
), p.
021006
.10.1115/1.4002386
32.
Detournay
,
E.
, and
Defourny
,
P.
,
1992
, “
A Phenomenological Model for the Drilling Action of Drag Bits
,”
Int. J. Rock Mech. Min. Sci. Geomech. Abstr.
,
29
(
1
), pp.
13
23
.10.1016/0148-9062(92)91041-3
33.
Detournay
,
E.
,
Richard
,
T.
, and
Shepherd
,
M.
,
2008
, “
Drilling Response of Drag Bits: Theory and Experiment
,”
Int. J. Rock Mech. Min. Sci.
,
45
(
8
), pp.
1347
1360
.10.1016/j.ijrmms.2008.01.010
34.
Tian
,
D.
,
Ke
,
C.
, and
Song
,
X.
,
2020
, “
State Barrier Avoidance Control Design Using a Diffeomorphic Transformation Based Method
,” American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
854
857
.10.23919/ACC45564.2020.9147835
35.
Tian
,
D.
, and
Song
,
X.
,
2021
, “
Addressing Complex State Constraints in the Diffeomorphic Transformation Based Barrier Avoidance Control
,” American Control Conference (
ACC
), New Orleans, LA, May 25–28, pp.
2304
2308
.10.23919/ACC50511.2021.9483193
36.
Rugh
,
W. J.
, and
Shamma
,
J. S.
,
2000
, “
Research on Gain Scheduling
,”
Automatica
,
36
(
10
), pp.
1401
1425
.10.1016/S0005-1098(00)00058-3
37.
Tian
,
D.
, and
Song
,
X.
,
2018
, “
Observer Design for a Wellbore Drilling System With Downhole Measurement Feedback
,”
ASME J. Dyn. Syst., Meas., Control
,
140
(
7
), p.
071012
.10.1115/1.4038859
You do not currently have access to this content.