Abstract

This paper presents a novel resilient self-triggered model predictive control (ST-MPC) method to alleviate potential threats of false data injection (FDI) attacks on cyber-physical systems (CPSs). First, considering that the data transmitted via the sensor-to-controller (S–C) and controller-to-actuator (C–A) channels in CPS may be tampered with by FDI attacks, a novel input reconstruction strategy combined with the ST-MPC mechanism is proposed to alleviate the threats of FDI attacks while reducing the computational and communication resources, in which key optimal control signals are selected and protected based on systematic performance inequalities. Correspondingly, a resilient ST-MPC algorithm combined with the dual-mode strategy is further proposed. Moreover, the iterative feasibility and the closed-loop stability are strictly demonstrated. Finally, the effectiveness of the proposed strategy is verified via a simulation study.

References

1.
Hasan
,
M. K.
,
Habib
,
A. A.
,
Shukur
,
Z.
,
Ibrahim
,
F.
,
Islam
,
S.
, and
Razzaque
,
M. A.
,
2023
, “
Review on Cyber-Physical and Cyber-Security System in Smart Grid: Standards, Protocols, Constraints, and Recommendations
,”
J. Network Comput. Appl.
,
209
, p.
103540
.10.1016/j.jnca.2022.103540
2.
Bian
,
Y.
,
Zhang
,
J.
,
Hu
,
M.
,
Du
,
C.
,
Cui
,
Q.
, and
Ding
,
R.
,
2023
, “
Self-Triggered Distributed Model Predictive Control for Cooperative Diving of Multi-AUV System
,”
Ocean Eng.
,
267
, p.
113262
.10.1016/j.oceaneng.2022.113262
3.
Pu
,
H.
,
He
,
L.
,
Cheng
,
P.
,
Sun
,
M.
, and
Chen
,
J.
,
2023
, “
Security of Industrial Robots: Vulnerabilities, Attacks, and Mitigations
,”
IEEE Network
,
37
(
1
), pp.
111
117
.10.1109/MNET.116.2200034
4.
Alguliyev
,
R.
,
Imamverdiyev
,
Y.
, and
Sukhostat
,
L.
,
2018
, “
Cyber-Physical Systems and Their Security Issues
,”
Comput. Ind.
,
100
, pp.
212
223
.10.1016/j.compind.2018.04.017
5.
Ye
,
Z.
,
Zhang
,
D.
,
Deng
,
C.
,
Yan
,
H.
, and
Feng
,
G.
,
2023
, “
Finite-Time Resilient Sliding Mode Control of Nonlinear UMV Systems Subject to DoS Attacks
,”
Automatica
,
156
, p.
111170
.10.1016/j.automatica.2023.111170
6.
Cetinkaya
,
A.
,
Ishii
,
H.
, and
Hayakawa
,
T.
,
2019
, “
An Overview on Denial-of-Service Attacks in Control Systems: Attack Models and Security Analyses
,”
Entropy
,
21
(
2
), p.
210
.10.3390/e21020210
7.
Zhang
,
D.
,
Wang
,
Q.-G.
,
Feng
,
G.
,
Shi
,
Y.
, and
Vasilakos
,
A. V.
,
2021
, “
A Survey on Attack Detection, Estimation and Control of Industrial Cyber–Physical Systems
,”
ISA Trans.
,
116
, pp.
1
16
.10.1016/j.isatra.2021.01.036
8.
Wu
,
G.
,
Sun
,
J.
, and
Chen
,
J.
,
2018
, “
Optimal Data Injection Attacks in Cyber-Physical Systems
,”
IEEE Trans. Cybern.
,
48
(
12
), pp.
3302
3312
.10.1109/TCYB.2018.2846365
9.
McLaughlin
,
S.
,
Konstantinou
,
C.
,
Wang
,
X.
,
Davi
,
L.
,
Sadeghi
,
A.-R.
,
Maniatakos
,
M.
, and
Karri
,
R.
,
2016
, “
The Cybersecurity Landscape in Industrial Control Systems
,”
Proc. IEEE
,
104
(
5
), pp.
1039
1057
.10.1109/JPROC.2015.2512235
10.
Tao
,
S.
,
Chen
,
J.
,
Zhou
,
B.
, and
Zhang
,
H.
,
2024
, “
Simultaneous Robust State and Sensor Fault Estimation of Autonomous Vehicle Via Synthesized Design of Dynamic and Learning Observers
,”
IEEE Trans. Veh. Technol.
,
73
(
2
), pp.
1753
1764
.10.1109/TVT.2023.3318994
11.
Amin
,
A. A.
, and
Hasan
,
K. M.
,
2019
, “
A Review of Fault Tolerant Control Systems: Advancements and Applications
,”
Measurement
,
143
, pp.
58
68
.10.1016/j.measurement.2019.04.083
12.
Guo
,
X.-G.
,
Liu
,
P.-M.
,
Wu
,
Z.-G.
,
Zhang
,
D.
, and
Ahn
,
C. K.
,
2023
, “
Hybrid Event-Triggered Group Consensus Control for Heterogeneous Multi-Agent Systems With TVNUD Faults and Stochastic FDI Attacks
,”
IEEE Trans. Autom. Control
,
68
(
12
), pp.
8013
8020
.10.1109/TAC.2023.3254368
13.
Kim
,
S.
,
Park
,
K.-J.
, and
Lu
,
C.
,
2022
, “
A Survey on Network Security for Cyber–Physical Systems: From Threats to Resilient Design
,”
IEEE Commun. Surv. Tutorials
,
24
(
3
), pp.
1534
1573
.10.1109/COMST.2022.3187531
14.
Farivar
,
F.
,
Haghighi
,
M. S.
,
Jolfaei
,
A.
, and
Alazab
,
M.
,
2020
, “
Artificial Intelligence for Detection, Estimation, and Compensation of Malicious Attacks in Nonlinear Cyber-Physical Systems and Industrial IoT
,”
IEEE Trans. Ind. Inf.
,
16
(
4
), pp.
2716
2725
.10.1109/TII.2019.2956474
15.
He
,
N.
,
Ma
,
K.
,
Li
,
H.
, and
Li
,
Y.
,
2024
, “
Resilient Self-Triggered Model Predictive Control of Discrete-Time Nonlinear Cyberphysical Systems Against False Data Injection Attacks
,”
IEEE Intell. Transp. Syst. Mag.
, pp.
2
15
.10.1109/MITS.2023.3305643
16.
Wang
,
M.
,
Hu
,
J.
, and
Cao
,
J.
,
2023
, “
Resilient Consensus Control for Linear Multi-Agent System Against the False Data Injection Attacks
,”
Int. J. Control, Autom. Syst.
,
21
(
7
), pp.
2112
2123
.10.1007/s12555-022-0261-y
17.
Wang
,
X.
,
Tian
,
M.
,
Cao
,
M.
,
Li
,
X.
,
Zhao
,
Y.
,
Zhao
,
X.
,
Jiang
,
T.
, and
Wang
,
X.
,
2019
, “
Countermeasures to False Data Injection Attacks on Power System State Estimation Based on Protecting Measurements
,”
J. Nanoelectron. Optoelectron.
,
14
(
5
), pp.
626
634
.10.1166/jno.2019.2590
18.
Chen
,
L.
,
Li
,
Y.
, and
Tong
,
S.
,
2023
, “
Robust Adaptive Control for Nonlinear Cyber-Physical Systems With FDI Attacks Via Attack Estimation
,”
Int. J. Robust Nonlinear Control
,
33
(
15
), pp.
9299
9316
.10.1002/rnc.6851
19.
He
,
H.
,
Qi
,
W.
,
Yan
,
H.
,
Cheng
,
J.
, and
Shi
,
K.
,
2023
, “
Adaptive Fuzzy Resilient Control for Switched Systems With State Constraints Under Deception Attacks
,”
Inf. Sci.
,
621
, pp.
596
610
.10.1016/j.ins.2022.11.074
20.
Zhu
,
P.
,
Jin
,
S.
,
Bu
,
X.
,
Hou
,
Z.
, and
Yin
,
C.
,
2023
, “
Model-Free Adaptive Control for a Class of Mimo Nonlinear Cyberphysical Systems Under False Data Injection Attacks
,”
IEEE Trans. Control Network Syst.
,
10
(
1
), pp.
467
478
.10.1109/TCNS.2022.3203354
21.
Nash
,
A.
,
2024
, “
Predictive Control Co-Design (PCCD): A Single-Level Optimization Framework for Computationally-Efficient Approximation of Recursive MPC in CCD
,”
ASME J. Dyn. Syst., Meas., Control
, 146(4), p.
041002
.10.1115/1.4064772
22.
He
,
N.
,
Li
,
Y.
,
Li
,
H.
,
He
,
D.
, and
Cheng
,
F.
,
2024
, “
PID-Based Event-Triggered MPC for Constrained Nonlinear Cyber-Physical Systems: Theory and Application
,”
IEEE Trans. Ind. Electron.
,
71
(
10
), pp.
13103
13112
.10.1109/TIE.2024.3357846
23.
Sun
,
Q.
,
Chen
,
J.
, and
Shi
,
Y.
,
2021
, “
Integral-Type Event-Triggered Model Predictive Control of Nonlinear Systems With Additive Disturbance
,”
IEEE Trans. Cybern.
,
51
(
12
), pp.
5921
5929
.10.1109/TCYB.2019.2963141
24.
Yang
,
H.
,
Dai
,
L.
,
Xie
,
H.
,
Shi
,
Y.
, and
Xia
,
Y.
,
2024
, “
Resilient MPC Under Severe Attacks on Both Forward and Feedback Communication Channels
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
14
.10.1109/TASE.2023.3323806
25.
Hu
,
Z.
,
Su
,
R.
,
Zhang
,
K.
,
Xu
,
Z.
, and
Ma
,
R.
,
2023
, “
Resilient Event-Triggered Model Predictive Control for Adaptive Cruise Control Under Sensor Attacks
,”
IEEE/CAA J. Autom. Sin.
,
10
(
3
), pp.
807
809
.10.1109/JAS.2023.123111
26.
Xu
,
Y.
,
Yuan
,
Y.
,
Yang
,
H.
, and
Zhou
,
D.
,
2021
, “
The Safety Region-Based Model Predictive Control for Discrete-Time Systems Under Deception Attacks
,”
Int. J. Syst. Sci.
,
52
(
10
), pp.
2144
2160
.10.1080/00207721.2021.1879965
27.
Qin
,
Y.
,
Zhao
,
Y.
,
Huang
,
K.
,
Tian
,
Y.-C.
, and
Zhou
,
C.
,
2021
, “
Dynamic Model Predictive Control for Constrained Cyber-Physical Systems Subject to Actuator Attacks
,”
Int. J. Syst. Sci.
,
52
(
4
), pp.
821
831
.10.1080/00207721.2020.1841847
28.
Li
,
H.
, and
Shi
,
Y.
,
2014
, “
Event-Triggered Robust Model Predictive Control of Continuous-Time Nonlinear Systems
,”
Automatica
,
50
(
5
), pp.
1507
1513
.10.1016/j.automatica.2014.03.015
29.
Eqtami
,
A.
,
Heshmati-Alamdari
,
S.
,
Dimarogonas
,
D. V.
, and
Kyriakopoulos
,
K. J.
,
2013
, “
Self-Triggered Model Predictive Control for Nonholonomic Systems
,” 2013 European Control Conference (
ECC
), Zurich, Switzerland, July 17–19, pp.
638
643
.10.23919/ECC.2013.6669628
30.
Cui
,
D.
, and
Li
,
H.
,
2022
, “
Dual Self-Triggered Model-Predictive Control for Nonlinear Cyber-Physical Systems
,”
IEEE Trans. Syst., Man, Cybern.: Syst.
,
52
(
6
), pp.
3442
3452
.10.1109/TSMC.2021.3070229
31.
Hashimoto
,
K.
,
Adachi
,
S.
, and
Dimarogonas
,
D. V.
,
2015
, “
Self-Triggered Nonlinear Model Predictive Control for Networked Control Systems
,” 2015 American Control Conference (
ACC
), Chicago, IL, July 1–3, pp.
4239
4244
.10.1109/ACC.2015.7171995
32.
Chen
,
H.
, and
Allgöwer
,
F.
,
1998
, “
A Quasi-Infinite Horizon Nonlinear Model Predictive Control Scheme With Guaranteed Stability
,”
Automatica
,
34
(
10
), pp.
1205
1217
.10.1016/S0005-1098(98)00073-9
33.
Sun
,
Z.
, and
Xia
,
Y.
,
2016
, “
Receding Horizon Tracking Control of Unicycle-Type Robots Based on Virtual Structure
,”
Int. J. Robust Nonlinear Control
,
26
(
17
), pp.
3900
3918
.10.1002/rnc.3555
34.
Luo
,
Y.
,
Xia
,
Y.
, and
Sun
,
Z.
,
2019
, “
Robust Event-Triggered Model Predictive Control for Constrained Linear Continuous System
,”
Int. J. Robust Nonlinear Control
,
29
(
5
), pp.
1216
1229
.10.1002/rnc.4432
35.
Sun
,
Z.
,
Dai
,
L.
,
Liu
,
K.
,
Dimarogonas
,
D. V.
, and
Xia
,
Y.
,
2019
, “
Robust Self-Triggered MPC With Adaptive Prediction Horizon for Perturbed Nonlinear Systems
,”
IEEE Trans. Autom. Control
,
64
(
11
), pp.
4780
4787
.10.1109/TAC.2019.2905223
You do not currently have access to this content.