Abstract

Control barrier function-based quadratic program (CBF-QP) provides an avenue for agile and numerically efficient obstacle avoidance algorithms. However, the CBF-QP methods may lead to lengthy detours and undesirable avoidance maneuvers. This paper proposes a bi-level CBF-QP for the safe navigation of quadrotors. A Planning-QP is proposed to create a safe reference trajectory that shadows the actual reference trajectory with prescribed avoidance acceleration, velocity, distance, and direction during the avoidance maneuver. A control Lyapunov function (CLF) ensures that modified reference closely matches the actual reference outside the avoidance regions and multiple control barrier functions (CBFs) ensure the safety and smoothness of the avoidance trajectory. Model uncertainties can undermine the safety of the quadrotor while tracking the modified reference. Hence, a Tracking-QP is designed to achieve accurate tracking with ensured safe maneuvering around obstacles, where a new CBF is constructed to prevent actuator saturation. Prescribed attitude bounds are ensured via additional acceleration constraints in the Tracking-QP. The proposed method is validated using numerous experiments involving various static obstacles where the quadrotor carries different payloads.

References

1.
Wieland
,
P.
, and
Allgöwer
,
F.
,
2007
, “
Constructive Safety Using Control Barrier Functions
,”
IFAC Proc. Vol.
,
40
(
12
), pp.
462
467
.10.3182/20070822-3-ZA-2920.00076
2.
Ames
,
A. D.
,
Grizzle
,
J. W.
, and
Tabuada
,
P.
,
2014
, “
Control Barrier Function Based Quadratic Programs With Application to Adaptive Cruise Control
,”
53rd IEEE Conference on Decision and Control
,
Los Angeles, CA
, Dec. 15–17, pp.
6271
6278
.10.1109/CDC.2014.7040372
3.
Singletary
,
A.
,
Klingebiel
,
K.
,
Bourne
,
J.
,
Browning
,
A.
,
Tokumaru
,
P.
, and
Ames
,
A.
,
2021
, “
Comparative Analysis of Control Barrier Functions and Artificial Potential Fields for Obstacle Avoidance
,” 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
Prague, Czech Republic
, Sept. 27–Oct. 1, pp.
8129
8136
.10.1109/IROS51168.2021.9636670
4.
Desai
,
M.
, and
Ghaffari
,
A.
,
2023
, “
Auxiliary Control to Avoid Undesirable Equilibria in Constrained Quadratic Programs for Trajectory Tracking Applications
,”
IEEE Trans. Rob.
,
39
(
3
), pp.
2078
2092
.10.1109/TRO.2022.3233346
5.
Jankovic
,
M.
,
2018
, “
Robust Control Barrier Functions for Constrained Stabilization of Nonlinear Systems
,”
Automatica
,
96
, pp.
359
367
.10.1016/j.automatica.2018.07.004
6.
Choi
,
J.
,
Castaneda
,
F.
,
Tomlin
,
C. J.
, and
Sreenath
,
K.
,
2020
, “
Reinforcement Learning for Safety-Critical Control Under Model Uncertainty, Using Control Lyapunov Functions and Control Barrier Functions
,” Proceedings of Robotics: Science and Systems (
RSS
), Corvallis, OR, July 12–16, p. 88.https://www.roboticsproceedings.org/rss16/p088.pdf
7.
Lopez
,
B. T.
,
Slotine
,
J.-J. E.
, and
How
,
J. P.
,
2021
, “
Robust Adaptive Control Barrier Functions: An Adaptive and Data-Driven Approach to Safety
,”
IEEE Control Syst. Lett.
,
5
(
3
), pp.
1031
1036
.10.1109/LCSYS.2020.3005923
8.
Brunke
,
L.
,
Greeff
,
M.
,
Hall
,
A. W.
,
Yuan
,
Z.
,
Zhou
,
S.
,
Panerati
,
J.
, and
Schoellig
,
A. P.
,
2022
, “
Safe Learning in Robotics: From Learning-Based Control to Safe Reinforcement Learning
,”
Annu. Rev. Control, Rob., Auton. Syst.
,
5
(
1
), pp.
411
444
.10.1146/annurev-control-042920-020211
9.
Zeng
,
J.
,
Zhang
,
B.
, and
Sreenath
,
K.
,
2021
, “
Safety-Critical Model Predictive Control With Discrete-Time Control Barrier Function
,” 2021 American Control Conference (
ACC
),
New Orleans, LA
, May 25–28, pp.
3882
3889
.10.23919/ACC50511.2021.9483029
10.
Wabersich
,
K. P.
, and
Zeilinger
,
M. N.
,
2018
, “
Linear Model Predictive Safety Certification for Learning-Based Control
,” 2018 IEEE Conference on Decision and Control (
CDC
),
Miami, FL
, Dec. 17–19, pp.
7130
7135
.10.1109/CDC.2018.8619829
11.
Didier
,
A.
,
Wabersich
,
K. P.
, and
Zeilinger
,
M. N.
,
2021
, “
Adaptive Model Predictive Safety Certification for Learning-Based Control
,” 60th IEEE Conference on Decision and Control (
CDC
),
Austin, TX
, Dec. 14–17, pp.
809
815
.10.1109/CDC45484.2021.9682832
12.
Jin
,
T.
,
Wang
,
X.
,
Ji
,
H.
,
Di
,
J.
, and
Yan
,
H.
,
2022
, “
Collision Avoidance for Multiple Quadrotors Using Elastic Safety Clearance Based Model Predictive Control
,” 2022 International Conference on Robotics and Automation (
ICRA
),
Philadelphia, PA
, May 23–27, pp.
265
271
.10.1109/ICRA46639.2022.9811659
13.
Zhang
,
D.
,
Yang
,
G.
, and
Khurshid
,
R. P.
,
2020
, “
Haptic Teleoperation of UAVs Through Control Barrier Functions
,”
IEEE Trans. Haptics
,
13
(
1
), pp.
109
115
.10.1109/TOH.2020.2966485
14.
Chen
,
S.
,
Wu
,
Z.
, and
Christofides
,
P. D.
,
2022
, “
Machine-Learning-Based Construction of Barrier Functions and Models for Safe Model Predictive Control
,”
AIChE J.
,
68
(
6
), p.
e17456
.10.1002/aic.17456
15.
Folkestad
,
C.
,
Chen
,
Y.
,
Ames
,
A. D.
, and
Burdick
,
J. W.
,
2021
, “
Data-Driven Safety-Critical Control: Synthesizing Control Barrier Functions With Koopman Operators
,”
IEEE Control Syst. Lett.
,
5
(
6
), pp.
2012
2017
.10.1109/LCSYS.2020.3046159
16.
Long
,
K.
,
Qian
,
C.
,
Cortés
,
J.
, and
Atanasov
,
N.
,
2021
, “
Learning Barrier Functions With Memory for Robust Safe Navigation
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
4931
4938
.10.1109/LRA.2021.3070250
17.
Takai
,
M.
,
Igarashi
,
M.
, and
Nakamura
,
H.
,
2020
, “
Control Barrier Function Design Using Revived Transformation
,”
J. Mar. Sci. Technol.
,
28
(
5
), p.
7
.https://jmstt.ntou.edu.tw/journal/vol28/iss5/7/
18.
Doeser
,
L.
,
Nilsson
,
P.
,
Ames
,
A. D.
, and
Murray
,
R. M.
,
2020
, “
Invariant Sets for Integrators and Quadrotor Obstacle Avoidance
,” 2020 American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
3814
3821
.10.23919/ACC45564.2020.9147872
19.
Squires
,
E.
,
Pierpaoli
,
P.
, and
Egerstedt
,
M.
,
2018
, “
Constructive Barrier Certificates With Applications to Fixed-Wing Aircraft Collision Avoidance
,” 2018 IEEE Conference on Control Technology and Applications (
CCTA
), Copenhagen, Denmark, Aug. 21–24, pp.
1656
1661
.10.1109/CCTA.2018.8511342
20.
Ghaffari
,
A.
,
2021
, “
Analytical Design and Experimental Verification of Geofencing Control for Aerial Applications
,”
IEEE/ASME Trans. Mechatron.
,
26
(
2
), pp.
1106
1117
.10.1109/TMECH.2020.3017712
21.
Ames
,
A. D.
,
Xu
,
X.
,
Grizzle
,
J. W.
, and
Tabuada
,
P.
,
2017
, “
Control Barrier Function Based Quadratic Programs for Safety Critical Systems
,”
IEEE Trans. Autom. Control
,
62
(
8
), pp.
3861
3876
.10.1109/TAC.2016.2638961
22.
Xu
,
X.
,
Grizzle
,
J. W.
,
Tabuada
,
P.
, and
Ames
,
A. D.
,
2018
, “
Correctness Guarantees for the Composition of Lane Keeping and Adaptive Cruise Control
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1216
1229
.10.1109/TASE.2017.2760863
23.
Hsu
,
S.-C.
,
Xu
,
X.
, and
Ames
,
A. D.
,
2015
, “
Control Barrier Function Based Quadratic Programs With Application to Bipedal Robotic Walking
,” American Control Conference (
ACC
),
Chicago, IL
, July 1–3, pp.
4542
4548
.10.1109/ACC.2015.7172044
24.
Cortez
,
W. S.
,
Oetomo
,
D.
,
Manzie
,
C.
, and
Choong
,
P.
,
2021
, “
Control Barrier Functions for Mechanical Systems: Theory and Application to Robotic Grasping
,”
IEEE Trans. Control Syst. Technol.
,
29
(
2
), pp.
530
545
.10.1109/TCST.2019.2952317
25.
Desai
,
M.
, and
Ghaffari
,
A.
,
2022
, “
CLF-CBF Based Quadratic Programs for Safe Motion Control of Nonholonomic Mobile Robots in Presence of Moving Obstacles
,” 2022 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (
AIM
),
Sapporo, Japan
, July 11–15, pp.
16
21
.10.1109/AIM52237.2022.9863392
26.
Khan
,
M.
,
Zafar
,
M.
, and
Chatterjee
,
A.
,
2020
, “
Barrier Functions in Cascaded Controller: Safe Quadrotor Control
,” 2020 American Control Conference (
ACC
),
Denver, CO
, July 1–3, pp.
1737
1742
.10.23919/ACC45564.2020.9147864
27.
Wu
,
G.
, and
Sreenath
,
K.
,
2016
, “
Safety-Critical Control of a Planar Quadrotor
,” 2016 American Control Conference (
ACC
),
Boston, MA
, July 6–8, pp.
2252
2258
.10.1109/ACC.2016.7525253
28.
Wu
,
G.
, and
Sreenath
,
K.
,
2016
, “
Safety-Critical Control of a 3D Quadrotor With Range-Limited Sensing
,”
ASME
Paper No. DSCC2016-9913.10.1115/DSCC2016-9913
29.
Xu
,
B.
, and
Sreenath
,
K.
,
2018
, “
Safe Teleoperation of Dynamic UAVs Through Control Barrier Functions
,” 2018 IEEE International Conference on Robotics and Automation (
ICRA
),
Brisbane, Queensland, Australia
, May 21–25, pp.
7848
7855
.10.1109/ICRA.2018.8463194
30.
Endo
,
M.
,
Ibuki
,
T.
, and
Sampei
,
M.
,
2019
, “
Collision-Free Formation Control for Quadrotor Networks Based on Distributed Quadratic Programs
,” 2019 American Control Conference (
ACC
),
Philadelphia, PA
, July 10–12, pp.
3335
3340
.10.23919/ACC.2019.8814603
31.
Chen
,
Y.
,
Singletary
,
A.
, and
Ames
,
A. D.
,
2021
, “
Guaranteed Obstacle Avoidance for Multi-Robot Operations With Limited Actuation: A Control Barrier Function Approach
,”
IEEE Control Syst. Lett.
,
5
(
1
), pp.
127
132
.10.1109/LCSYS.2020.3000748
32.
Khan
,
S. H.
, and
Ghaffari
,
A.
,
2023
, “
Multi-Objective Trajectory Planning for Unmanned Aerial Vehicles Using CLF-CBF-Based Quadratic Programs
,” 2023 American Control Conference (
ACC
),
San Diego, CA
, May 31–June 2, pp.
726
731
.10.23919/ACC55779.2023.10156260
33.
Voos
,
H.
,
2009
, “
Nonlinear Control of a Quadrotor Micro-UAV Using Feedback-Linearization
,”
2009 IEEE International Conference on Mechatronics
,
Malaga, Spain
, Apr. 14–17, pp.
1
6
.10.1109/ICMECH.2009.4957154
34.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
,
Pearson
,
Upper Saddle River, NJ
.
35.
Sontag
,
E. D.
,
1989
, “
A ‘Universal’ Construction of Artstein's Theorem on Nonlinear Stabilization
,”
Syst. Control Lett.
,
13
(
2
), pp.
117
123
.10.1016/0167-6911(89)90028-5
36.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2016
, “
Exponential Control Barrier Functions for Enforcing High Relative-Degree Safety-Critical Constraints
,” 2016 American Control Conference (
ACC
),
Boston, MA
, July 6–8, pp.
322
328
.10.1109/ACC.2016.7524935
37.
Xu
,
X.
,
2018
, “
Constrained Control of Input–Output Linearizable Systems Using Control Sharing Barrier Functions
,”
Automatica
,
87
, pp.
195
201
.10.1016/j.automatica.2017.10.005
38.
Santillo
,
M.
, and
Jankovic
,
M.
,
2021
, “
Collision Free Navigation With Interacting, Non-Communicating Obstacles
,” 2021 American Control Conference (
ACC
),
New Orleans, LA
, May 25–28, pp.
1637
1643
.10.23919/ACC50511.2021.9482885
39.
Luukkonen
,
T.
,
2011
, “
Modelling and Control of Quadcopter
,”
Independent Research Project in Applied Mathematics
,
Espoo, Finland
, p.
22
.
40.
Faessler
,
M.
,
Franchi
,
A.
, and
Scaramuzza
,
D.
,
2018
, “
Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
620
626
.10.1109/LRA.2017.2776353
41.
Jia
,
J.
,
Guo
,
K.
,
Yu
,
X.
,
Zhao
,
W.
, and
Guo
,
L.
,
2022
, “
Accurate High-Maneuvering Trajectory Tracking for Quadrotors: A Drag Utilization Method
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6966
6973
.10.1109/LRA.2022.3176449
42.
Lyu
,
Y.
,
Luo
,
W.
, and
Dolan
,
J. M.
,
2021
, “
Probabilistic Safety-Assured Adaptive Merging Control for Autonomous Vehicles
,” 2021 IEEE International Conference on Robotics and Automation (
ICRA
), Xi'an, China, May 30–June 5, pp.
10764
10770
.10.1109/ICRA48506.2021.9561894
43.
Reis
,
M. F.
,
Aguiar
,
A. P.
, and
Tabuada
,
P.
,
2021
, “
Control Barrier Function-Based Quadratic Programs Introduce Undesirable Asymptotically Stable Equilibria
,”
IEEE Control Syst. Lett.
,
5
(
2
), pp.
731
736
.10.1109/LCSYS.2020.3004797
44.
Ghaffari
,
A.
, and
Desai
,
M.
,
2022
, “
Exponential Barrier Functions for Safe Steering of Nonholonomic Vehicles With Actuator Time-Delay
,”
IEEE Access
,
10
, pp.
9184
9197
.10.1109/ACCESS.2022.3144338
45.
Gros
,
S.
,
Quirynen
,
R.
, and
Diehl
,
M.
,
2012
, “
Aircraft Control Based on Fast Non-Linear MPC and Multiple-Shooting
,” 2012 IEEE 51st IEEE Conference on Decision and Control (
CDC
),
Maui, HI
, Dec. 10–13, pp.
1142
1147
.10.1109/CDC.2012.6426439
46.
Lindqvist
,
B.
,
Mansouri
,
S. S.
,
Agha-Mohammadi
,
A.-A.
, and
Nikolakopoulos
,
G.
,
2020
, “
Nonlinear MPC for Collision Avoidance and Control of UAVs With Dynamic Obstacles
,”
IEEE Rob. Autom. Lett.
,
5
(
4
), pp.
6001
6008
.10.1109/LRA.2020.3010730
47.
Moreno
,
J. A.
, and
Osorio
,
M.
,
2008
, “
A Lyapunov Approach to Second-Order Sliding Mode Controllers and Observers
,”
2008 47th IEEE Conference on Decision and Control
, Cancun, Mexico, Dec. 9–11, pp.
2856
2861
.10.1109/CDC.2008.4739356
You do not currently have access to this content.