Abstract

A flexible optical intensity sensor is designed in this study to address the poor adaptability of fixed-value parameters in exoskeleton research, which makes it difficult to handle system changes and uncertainties. The light transmission portion of the sensor is made of TPU and PET, exhibiting flexibility and bendable deformation characteristics, as well as good sensitivity, anti-interference capability, and stability. The flexible optical sensor is fixed on the side of the binding device, which is installed on the biceps brachii to collect the optical intensity loss signals after sensor bending. By utilizing this method, parameters such as the cross-sectional radius, arm centroid, and moment of inertia can be estimated in real-time. Finally, the estimated radius values are compared with theoretical values, and the accuracy is verified by combining the kinematic model. Experimental results demonstrate that the proposed method achieves a parameter information error of less than 8.63% and a stability better than 4.3%. Compared to the traditional fixed parameter method, the stability has improved by 25.06%, and the accuracy has improved by 9.04%.

References

1.
Liu
,
Z. L.
,
Zhang
,
K.
,
Wei
,
Y. L.
, et al.,
2023
, “
Research Status and Prospects of Rehabilitation Robot System
,”
J. Rob. Surg.
,
4
(
6
), pp.
497
506
.
2.
Li
,
Z. Y.
,
2023
, “
Key Technology Research of Joint-Assisted Exoskeleton Robot for Active Space Suit
,”
University of Electronic Science and Technology of China
, Chengdu, China, pp.
154
206
.
3.
Muñoz
,
V. F.
,
2022
, “
Sensors Technology for Medical Robotics
,”
Sensors
,
22
(
23
), p.
9290
.10.3390/s22239290
4.
Dong
,
Z. F.
, and
Wang
,
W. Q.
,
2017
, “
Simulation of Multi-Degree-of-Freedom Arm Movement of Humanoid Robot in Home Environment
,”
J. Donghua Univ. (Nat. Sci. Ed.)
,
43
(
4
), pp.
530
534
.
5.
Liu
,
S. P.
,
Hu
,
Z.
, and
Cheng
,
L.
,
2022
, “
Research and Implementation of Humanoid Robot Arm Action Imitation System
,”
Mach. Des. Manuf.
,
2022
(
2
), pp.
300
304
.10.19356/j.cnki.1001-3997.20211116.028
6.
Yu
,
L.
, and
Xu
,
F.
,
2007
, “
Analysis of Rotational Inertia of Clean Robot Arm and Its Motion Control
,”
Mach. Tool Autom. Technol.
,
2007
(
3
), pp.
34
40
.
7.
Chen
,
Z. Y.
,
Wang
,
H. Q.
,
Chen
,
J.
,
Zhao
,
Y. F.
,
Guo
,
H. L.
,
2023
, “
Human Distributed Dynamic Model and Parameter Identification
,”
J. Vib. Eng.
, pp.
1
8
.https://kns.cnki.net/kcms/detail/32.1349.T B.20230720.1009.002.html
8.
Azizpour
,
G.
,
Lancini
,
M.
,
Incerti
,
G.
,
Gaffurini
,
P.
, and
Legnani
,
G.
,
2018
, “
An Experimental Method to Estimate Upper Limbs Inertial Parameters During Handcycling
,”
J. Appl. Biomech.
,
34
(
3
), pp.
175
183
.10.1123/jab.2017-0136
9.
Xu
,
X.
,
Hou
,
L. Y.
,
Huang
,
X. Y.
,
Zhang
,
W. Y.
,
2014
, “
Design and Research of Wearable Upper Limb Rehabilitation Robot Based on Exoskeleton
,”
Robot
,
36
(
2
), pp.
147
155
.
10.
Krauss
,
H.
, and
Takemura
,
K.
,
2022
, “
Stretchable Optical Waveguide Sensor Capable of Two-Degree-of-Freedom Strain Sensing Mediated by a Semidivided Optical Core
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
2151
2157
.10.1109/TMECH.2022.3175205
11.
Wu
,
H.
,
Guo
,
Y.
,
Xiong
,
L.
,
Liu
,
W.
,
Li
,
G.
, and
Zhou
,
X.
,
2019
, “
Optical Fiber-Based Sensing, Measuring, and Implementation Methods for Slope Deformation Monitoring
,”
IEEE Sens. J.
,
19
(
8
), pp.
2786
2800
.10.1109/JSEN.2019.2891734
12.
Chen
,
D.
, and
Pei
,
Q.
,
2017
, “
Electronic Muscles and Skins: A Review of Soft Sensors and Actuators
,”
Chem. Rev.
,
117
(
17
), pp.
11239
11268
.10.1021/acs.chemrev.7b00019
13.
Zhang
,
W.
,
Jia
,
H.
,
Ju
,
L.
,
Shi
,
Y.
,
Ding
,
X.
, and
Feng
,
Y.
,
2023
, “
Bending-Sensitive Optical Waveguide Sensor With Carbon-Fiber Layer for Monitoring Grip Strength
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
31
, pp.
1922
1932
.10.1109/TNSRE.2023.3263227
14.
Zhu
,
P. Y.
,
Xu
,
Y.
, Wen, J. Y., Liu, C. C.,
2024
, “
A Wearable Device With Optical Waveguide for Muscle Force Detection
,” Patent No. CN117398269A.
15.
Habib
,
M. A.
,
Anower
,
M. S.
, and
Hasan
,
M. R.
,
2018
, “
Highly Birefringent and Low Effective Material Loss Microstructure Fiber for the Wave Guidance
,”
Opt. Commun.
,
423
, pp.
140
144
.10.1016/j.optcom.2018.04.022
16.
Wen
,
J.
,
Zhu
,
P.
, and
Liu
,
C.
,
2023
, “
Reconfigurable Exoskeleton Enhanced Rehabilitation and Control Efficiency
,”
Int. J. Simul. Process Modell.
,
20
(
2
), pp.
144
157
.10.1504/IJSPM.2023.136479
You do not currently have access to this content.