Abstract

Using the context of trajectory estimation and tracking for multirotor unmanned aerial vehicles (UAVs), we explore the challenges in applying high-gain observers to highly dynamic systems. The multirotor will operate in the presence of external disturbances and modeling errors. At the same time, the reference trajectory is unknown and generated from a reference system with unknown or partially known dynamics. We assume the only measurements that are available are the position and orientation of the multirotor and the position of the reference system. We adopt an extended high-gain observer (EHGO) estimation framework to estimate the unmeasured multirotor states, modeling errors, external disturbances, and the reference trajectory. We design a robust output feedback controller for trajectory tracking that comprises a feedback linearizing controller and the EHGO. The proposed control method is rigorously analyzed to establish its stability properties. Finally, we illustrate our theoretical results through numerical simulation and experimental validation in which a multirotor tracks a moving ground vehicle with an unknown trajectory and dynamics and successfully lands on the vehicle while in motion.

References

1.
Boss
,
C. J.
,
Srivastava
,
V.
, and
Khalil
,
H. K.
,
2020
, “
Robust Tracking of an Unknown Trajectory With a Multi-Rotor UAV: A High-Gain Observer Approach
,” American Control Conference (
ACC
), Denver, CO, July 1–3, pp.
1429
1434
.10.23919/ACC45564.2020.9147979
2.
Khalil
,
H. K.
,
2017
,
High-Gain Observers in Nonlinear Feedback Control
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
3.
Astolfi
,
D.
, and
Marconi
,
L.
,
2015
, “
A High-Gain Nonlinear Observer With Limited Gain Power
,”
IEEE Trans. Autom. Control
,
60
(
11
), pp.
3059
3064
.10.1109/TAC.2015.2408554
4.
Tran
,
D.-T.
,
Do
,
T.-C.
, and
Ahn
,
K.-K.
,
2019
, “
Extended High Gain Observer-Based Sliding Mode Control for an Electro-Hydraulic System With a Variant Payload
,”
Int. J. Precis. Eng. Manuf.
,
20
(
12
), pp.
2089
2100
.10.1007/s12541-019-00256-0
5.
Khalil
,
H. K.
,
2017
, “
High-Gain Observers in Feedback Control: Application to Permanent Magnet Synchronous Motors
,”
IEEE Control Syst. Mag.
,
37
(
3
), pp.
25
41
.10.1109/MCS.2017.2674438
6.
Lee
,
K. W.
, and
Khalil
,
H. K.
,
1997
, “
Adaptive Output Feedback Control of Robot Manipulators Using High-Gain Observer
,”
Int. J. Control
,
67
(
6
), pp.
869
886
.10.1080/002071797223839
7.
Yang
,
Z.-J.
,
Hara
,
S.
,
Kanae
,
S.
, and
Wada
,
K.
,
2011
, “
Robust Output Feedback Control of a Class of Nonlinear Systems Using a Disturbance Observer
,”
IEEE Trans. Control Syst. Technol.
,
19
(
2
), pp.
256
268
.10.1109/TCST.2010.2049998
8.
Lee
,
J.
,
Mukherjee
,
R.
, and
Khalil
,
H. K.
,
2015
, “
Output Feedback Stabilization of Inverted Pendulum on a Cart in the Presence of Uncertainties
,”
Automatica
,
54
, pp.
146
157
.10.1016/j.automatica.2015.01.013
9.
Lee
,
J.
,
Seo
,
J.
, and
Choi
,
J.
,
2021
, “
Output Feedback Control Design Using Extended High-Gain Observers and Dynamic Inversion With Projection for a Small Scaled Helicopter
,”
Automatica
,
133
, p.
109883
.10.1016/j.automatica.2021.109883
10.
Lee
,
J.
,
Mukherjee
,
R.
, and
Khalil
,
H. K.
,
2012
, “
Control Design for a Helicopter Using Dynamic Inversion and Extended High Gain Observers
,”
ASME
Paper No. DSCC2012-MOVIC2012-8664.10.1115/DSCC2012-MOVIC2012-8664
11.
Marconi
,
L.
,
Naldi
,
R.
, and
Isidori
,
A.
,
2014
, “
High-Gain Output Feedback for a Miniature UAV
,”
Int. J. Robust Nonlinear Control
,
24
(
6
), pp.
1104
1126
.10.1002/rnc.2959
12.
Ahrens
,
J. H.
, and
Khalil
,
H. K.
,
2009
, “
High-Gain Observers in the Presence of Measurement Noise: A Switched-Gain Approach
,”
Automatica
,
45
(
4
), pp.
936
943
.10.1016/j.automatica.2008.11.012
13.
Ball
,
A. A.
, and
Khalil
,
H. K.
,
2011
, “
Analysis of a Nonlinear High-Gain Observer in the Presence of Measurement Noise
,”
Proceedings of the 2011 American Control Conference
, San Francisco, CA, June 29–July 1,
pp.
2584
2589
.10.1109/ACC.2011.5991559
14.
Papachristos
,
C.
,
Dang
,
T.
,
Khattak
,
S.
,
Mascarich
,
F.
,
Khedekar
,
N.
, and
Alexis
,
K.
,
2018
, “
Modeling, Control, State Estimation and Path Planning Methods for Autonomous Multirotor Aerial Robots
,”
Found. Trends Rob.
,
7
(
3
), pp.
180
250
.10.1561/2300000058
15.
Kumar
,
V.
, and
Michael
,
N.
,
2012
, “
Opportunities and Challenges With Autonomous Micro Aerial Vehicles
,”
Int. J. Rob. Res.
,
31
(
11
), pp.
1279
1291
.10.1177/0278364912455954
16.
Huang
,
H.
,
Hoffmann
,
G. M.
,
Waslander
,
S. L.
, and
Tomlin
,
C. J.
,
2009
, “
Aerodynamics and Control of Autonomous Quadrotor Helicopters in Aggressive Maneuvering
,”
International Conference on Robotics and Automation
, Kobe, Japan, May 12–17,
pp.
3277
3282
.10.1109/ROBOT.2009.5152561
17.
Voos
,
H.
,
2009
, “
Nonlinear Control of a Quadrotor Micro-UAV Using Feedback-Linearization
,”
International Conference on Mechatronics
,
Malaga, Spain
, Apr. 14–17, pp.
1
6
.10.1109/ICMECH.2009.4957154
18.
Lee
,
D.
,
Kim
,
H. J.
, and
Sastry
,
S.
,
2009
, “
Feedback Linearization vs. Adaptive Sliding Mode Control for a Quadrotor Helicopter
,”
Int. J. Control, Autom. Syst.
,
7
(
3
), pp.
419
428
.10.1007/s12555-009-0311-8
19.
Huang
,
M.
,
Xian
,
B.
,
Diao
,
C.
,
Yang
,
K.
, and
Feng
,
Y.
,
2010
, “
Adaptive Tracking Control of Underactuated Quadrotor Unmanned Aerial Vehicles Via Backstepping
,”
American Control Conference
,
Baltimore, MD
, June 30–July 2, pp.
2076
2081
.10.1109/ACC.2010.5531424
20.
Lee
,
D.
,
Nataraj
,
C.
,
Burg
,
T. C.
, and
Dawson
,
D. M.
,
2011
, “
Adaptive Tracking Control of an Underactuated Aerial Vehicle
,”
American Control Conference
,
San Francisco, CA
, June 29–July 1, pp.
2326
2331
.10.1109/ACC.2011.5991594
21.
Nguyen
,
H.
,
Kamel
,
M.
,
Alexis
,
K.
, and
Siegwart
,
R.
,
2021
, “
Model Predictive Control for Micro Aerial Vehicles: A Survey
,” 2021 European Control Conference (
ECC
),
Delft, Netherlands
, June 29–July 2, pp.
1556
1563
.10.23919/ECC54610.2021.9654841
22.
Thanh
,
H. L. N. N.
, and
Hong
,
S. K.
,
2018
, “
Quadcopter Robust Adaptive Second Order Sliding Mode Control Based on PID Sliding Surface
,”
IEEE Access
,
6
, pp.
66850
66860
.10.1109/ACCESS.2018.2877795
23.
Kim
,
S.
,
Choi
,
S.
,
Kim
,
H.
,
Shin
,
J.
,
Shim
,
H.
, and
Kim
,
H. J.
,
2018
, “
Robust Control of an Equipment-Added Multirotor Using Disturbance Observer
,”
Trans. Control Syst. Technol.
,
26
(
4
), pp.
1524
1531
.10.1109/TCST.2017.2711602
24.
Kong
,
W.
,
Zhou
,
D.
,
Zhang
,
D.
, and
Zhang
,
J.
,
2014
, “
Vision-Based Autonomous Landing System for Unmanned Aerial Vehicle: A Survey
,” International Conference on Multisensor Fusion & Information Integration for Intelligent Systems (
MFI
), Beijing, China, Sept. 28–29, pp.
1
8
.10.1109/MFI.2014.6997750
25.
Gautam
,
A.
,
Sujit
,
P.
, and
Saripalli
,
S.
,
2014
, “
A Survey of Autonomous Landing Techniques for UAVs
,” International Conference on Unmanned Aircraft Systems (
ICUAS
), Orlando, FL, May 27–30, pp.
1210
1218
.10.1109/ICUAS.2014.6842377
26.
Feng
,
Y.
,
Zhang
,
C.
,
Baek
,
S.
,
Rawashdeh
,
S.
, and
Mohammadi
,
A.
,
2018
, “
Autonomous Landing of a UAV on a Moving Platform Using Model Predictive Control
,”
Drones
,
2
(
4
), p.
34
.10.3390/drones2040034
27.
Macés-Hernández
,
J. A.
,
Defaý
,
F.
, and
Chauffaut
,
C.
,
2017
, “
Autonomous Landing of an UAV on a Moving Platform Using Model Predictive Control
,” Asian Control Conference (
ASCC
), Gold Coast, QLD, Australia, Dec. 17–20, pp.
2298
2303
.10.1109/ASCC.2017.8287533
28.
Herissé
,
B.
,
Hamel
,
T.
,
Mahony
,
R.
, and
Russotto
,
F.-X.
,
2012
, “
Landing a VTOL Unmanned Aerial Vehicle on a Moving Platform Using Optical Flow
,”
IEEE Trans. Rob.
,
28
(
1
), pp.
77
89
.10.1109/TRO.2011.2163435
29.
Serra
,
P.
,
Cunha
,
R.
,
Hamel
,
T.
,
Cabecinhas
,
D.
, and
Silvestre
,
C.
,
2016
, “
Landing of a Quadrotor on a Moving Target Using Dynamic Image-Based Visual Servo Control
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1524
1535
.10.1109/TRO.2016.2604495
30.
Hoang
,
T.
,
Bayasgalan
,
E.
,
Wang
,
Z.
,
Tsechpenakis
,
G.
, and
Panagou
,
D.
,
2017
, “
Vision-Based Target Tracking and Autonomous Landing of a Quadrotor on a Ground Vehicle
,” American Control Conference (
ACC
), Seattle, WA, May 24–26, pp.
5580
5585
.10.23919/ACC.2017.7963823
31.
Lee
,
T.
,
Leok
,
M.
, and
McClamroch
,
N. H.
,
2010
, “
Geometric Tracking Control of a Quadrotor UAV on SE(3)
,” Conference on Decision and Control (
CDC
),
Atlanta, GA
, Dec. 15–17, pp.
5420
5425
.10.1109/CDC.2010.5717652
32.
Morse
,
A. S.
,
1973
, “
Structural Invariants of Linear Multivariable Systems
,”
SIAM J. Control
,
11
(
3
), pp.
446
465
.10.1137/0311037
33.
Franchi
,
A.
, and
Mallet
,
A.
,
2017
, “
Adaptive Closed-Loop Speed Control of BLDC Motors With Applications to Multi-Rotor Aerial Vehicles
,” International Conference on Robotics and Automation (
ICRA
),
Singapore
, May 29–June 3, pp.
5203
5208
.10.1109/ICRA.2017.7989610
34.
Lee
,
J.
,
Mukherjee
,
R.
, and
Khalil
,
H. K.
,
2016
, “
Output Feedback Performance Recovery in the Presence of Uncertainties
,”
Syst. Control Lett.
,
90
, pp.
31
37
.10.1016/j.sysconle.2015.10.016
35.
Boss
,
C. J.
,
Lee
,
J.
, and
Choi
,
J.
,
2017
, “
Uncertainty and Disturbance Estimation for Quadrotor Control Using Extended High-Gain Observers: Experimental Implementation
,”
ASME
Paper No. DSCC2017-5204.10.1115/DSCC2017-5204
36.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, Prentice Hall,
Upper Saddle River, NJ
.
37.
Jardin
,
M.
, and
Mueller
,
E.
,
2007
, “
Optimized Measurements of UAV Mass Moment of Inertia With a Bifilar Pendulum
,”
AIAA
Paper No. 2007-6822.10.2514/6.2007-6822
38.
Falanga
,
D.
,
Zanchettin
,
A.
,
Simovic
,
A.
,
Delmerico
,
J.
, and
Scaramuzza
,
D.
,
2017
, “
Vision-Based Autonomous Quadrotor Landing on a Moving Platform
,” 2017 IEEE International Symposium on Safety, Security and Rescue Robotics (
SSRR
),
Shanghai, China
, Oct. 11–13, pp.
200
207
.10.1109/SSRR.2017.8088164
39.
Paris
,
A.
,
Lopez
,
B. T.
, and
How
,
J. P.
,
2020
, “
Dynamic Landing of an Autonomous Quadrotor on a Moving Platform in Turbulent Wind Conditions
,” 2020 IEEE International Conference on Robotics and Automation (
ICRA
),
Paris, France
, May 31–Aug. 31, pp.
9577
9583
.10.1109/ICRA40945.2020.9197081
40.
Astolfi
,
D.
,
Marconi
,
L.
,
Praly
,
L.
, and
Teel
,
A. R.
,
2018
, “
Low-Power Peaking-Free High-Gain Observers
,”
Automatica
,
98
, pp.
169
179
.10.1016/j.automatica.2018.09.009
41.
Khalil
,
H. K.
,
2017
, “
Cascade High-Gain Observers in Output Feedback Control
,”
Automatica
,
80
, pp.
110
118
.10.1016/j.automatica.2017.02.031
42.
Khalil
,
H. K.
,
2015
,
Nonlinear Control
,
Pearson
,
New York
.
You do not currently have access to this content.