Abstract

The effective design of a path-following controller for unmanned surface vessels (USVs) under uncertain influences induced by various factors such as environmental disturbances is a challenging task. In this study, we propose to fulfill this task through taking benefits from an online parameter identification technique, the discrete-time sliding mode control (DSMC) method, and the improved line of sight (LOS) algorithm. The Particle Swarm Optimization algorithm (PSO) was adopted to provide initial settings for the straightforward online identification method, i.e., the Forgetting Factor Recursive Least Square method (FFRLS). In order to handle the time-varying sideslip angle of a ship that exists in reality due to environmental disturbances, a multimodel course control scheme is proposed to improve the control performance. For this control scheme, a flexible selection mechanism in between a heading angle or a course angle tracking controller based on the DSMC method is designed. A solution to fixing the tracking deviation problem of the LOS guidance law is investigated for which the gradient descent method is introduced. A series of experiments are carried out at sea with a USV called Orca to verify and validate the proposed hybrid path following approach. The results showed that tracking errors mainly induced by environmental disturbances existed but the maximum magnitude among them was small enough and remained within the acceptable range, especially from the marine engineering point of view. These results, to a high degree, validated the robustness and precision of the proposed controller.

References

1.
Wang
,
Z.
,
Yang
,
S.
,
Xiang
,
X.
,
Vasilijević
,
A.
,
Mišković
,
N.
, and
Nađ
,
Đ.
,
2021
, “
Cloud-Based Mission Control of USV Fleet: Architecture, Implementation and Experiments
,”
Control Eng. Pract.
,
106
, p.
104657
.10.1016/j.conengprac.2020.104657
2.
Ye
,
J.
,
Reppa
,
V.
,
Godjevac
,
M.
, and
Negenborn
,
R.
,
2021
, “
Construction Mode Detection for Autonomous Offshore Heavy Lift Operations
,”
Saf. Sci.
,
133
, p.
104991
.10.1016/j.ssci.2020.104991
3.
Zolich
,
A.
,
Palma
,
D.
,
Kansanen
,
K.
,
Fjørtoft
,
K.
,
Sousa
,
J.
,
Johansson
,
K. H.
,
Jiang
,
Y.
,
Dong
,
H.
, and
Johansen
,
T. A.
,
2019
, “
Survey on Communication and Networks for Autonomous Marine Systems
,”
J. Intell. Rob. Syst.
,
95
(
3–4
), pp.
789
813
.10.1007/s10846-018-0833-5
4.
Chen
,
L.
,
Huang
,
Y.
,
Zheng
,
H.
,
Hopman
,
H.
, and
Negenborn
,
R.
,
2020
, “
Cooperative Multi Vessel Systems in Urban Waterway Networks
,”
IEEE Trans. Intell. Transp. Syst.
,
21
(
8
), pp.
3294
3307
.10.1109/TITS.2019.2925536
5.
Schiaretti
,
M.
,
Chen
,
L.
, and
Negenborn
,
R. R.
,
2017
, “
Survey on Autonomous Surface Vessels: Part I–A New Detailed Definition of Autonomy Levels
,”
International Conference on Computational Logistics
, Southampton, UK, Oct. 18–20, pp.
219
233
.10.1007/978-3-319-68496-3_15
6.
Du
,
B.
,
Lin
,
B.
,
Zhang
,
C.
,
Dong
,
B.
, and
Zhang
,
W.
,
2022
, “
Safe Deep Reinforcement Learning-Based Adaptive Control for Usv Interception Mission
,”
Ocean Eng.
,
246
, p.
110477
.10.1016/j.oceaneng.2021.110477
7.
Zhu
,
G.
,
Ma
,
Y.
, and
Hu
,
S.
,
2020
, “
Singleparameter-Learning-Based Finite-Time Tracking Control of Underactuated Msvs Under Input Saturation
,”
Control Eng. Pract.
,
105
, p.
104652
.10.1016/j.conengprac.2020.104652
8.
Yao
,
Y-L.
,
Liang
,
X-F.
,
Li
,
M-Z.
,
Yu
,
K.
,
Chen
,
Z.
,
Ni
,
C-B.
, and
Teng
,
Y.
,
2021
, “
Path Planning Method Based on d* Lite Algorithm for Unmanned Surface Vehicles in Complex Environments
,”
China Ocean Eng.
,
35
(
3
), pp.
372
383
.10.1007/s13344-021-0034-z
9.
Ellenrieder
,
K. D. V.
,
2015
, “
Development of a Usv-Based Bridge Inspection System
,”
OCEANS 2015–MTS/IEEE Washington
, Washington, DC, Oct. 19–22, pp.
1
10
.10.23919/OCEANS.2015.7404598
10.
Siyang
,
S.
, and
Kerdcharoen
,
T.
,
2016
, “
Development of Unmanned Surface Vehicle for Smart Water Quality Inspector
,” 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (
ECTI-CON
), Chiang Mai, Thailand, June 28–July 1, pp.
1
5
.10.1109/ECTICon.2016.7561370
11.
Xiao
,
C.
,
Zhong
,
L.
,
Jianqiang
,
Z.
,
Dechao
,
Z.
, and
Jiao
,
D.
,
2018
, “
Adaptive Sliding-Mode Path Following Control System of the Underactuated Usv Under the Influence of Ocean Currents
,”
J. Syst. Eng. Electron.
,
29
(
6
), pp.
1271
1283
.10.21629/JSEE.2018.06.14
12.
Tao
,
W.
,
Zhu
,
M.
,
Chen
,
S.
,
Cheng
,
X.
,
Wen
,
Y.
,
Zhang
,
W.
,
Negenborn
,
R.
, and
Pang
,
Y.
,
2023
, “
Coordination and Optimization Control Framework for Vessels Platooning in Inland Waterborne Transportation System
,”
IEEE Trans. Intell. Transp. Syst.
,
24
(
12
), pp.
15667
15686
.10.1109/TITS.2022.3220000
13.
Fossen
,
T. I.
,
2011
,
Handbook of Marine Craft Hydrodynamics and Motion Control
,
Wiley
,
Hoboken, NJ
.
14.
Shi
,
Y.
,
Shen
,
C.
,
Fang
,
H.
, and
Li
,
H.
,
2017
, “
Advanced Control in Marine Mechatronic Systems: A Survey
,”
IEEE/ASME Trans. Mechatron.
, 22(3), pp. 1121–1131.10.1109/TMECH.2017.2660528
15.
Fu
,
M-y.
,
Wang
,
S-S.
, and
Wang
,
Y-h.
,
2019
, “
Multi-Behavior Fusion Based Potential Field Method for Path Planning of Unmanned Surface Vessel
,”
China Ocean Eng.
,
33
(
5
), pp.
583
592
.10.1007/s13344-019-0056-y
16.
Lekkas
,
A.
, and
Fossen
,
T.
,
2014
, “
Integral Los Path Following for Curved Paths Based on a Monotone Cubic Hermite Spline Parametrization
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2287
2301
.10.1109/TCST.2014.2306774
17.
Yu
,
Y.
,
Guo
,
C.
, and
Yu
,
H.
,
2019
, “
Finite-Time Plosbased Integral Sliding-Mode Adaptive Neural Path Following for Unmanned Surface Vessels With Unknown Dynamics and Disturbances
,”
IEEE Trans. Autom. Sci. Eng.
,
16
(
4
), pp.
1500
1511
.10.1109/TASE.2019.2925657
18.
Li
,
M.
,
Li
,
T.
,
Gao
,
X.
,
Shan
,
Q.
,
Chen
,
C. P.
, and
Xiao
,
Y.
,
2020
, “
Adaptive nn Event-Triggered Control for Path Following of Underactuated Vessels With Finite-Time Convergence
,”
Neurocomputing
,
379
, pp.
203
213
.10.1016/j.neucom.2019.10.044
19.
Liu
,
L.
,
Wang
,
D.
,
Peng
,
Z.
,
Li
,
T.
, and
Chen
,
C. L. P.
,
2020
, “
Cooperative Path Following Ringnetworked Under-Actuated Autonomous Surface Vehicles: Algorithms and Experimental Results
,”
IEEE Trans. Cybern.
,
50
(
4
), pp.
1519
1529
.10.1109/TCYB.2018.2883335
20.
Haseltalab
,
A.
, and
Negenborn
,
R. R.
,
2019
, “
Adaptive Control for Autonomous Ships With Uncertain Model and Unknown Propeller Dynamics
,”
Control Eng. Pract.
,
91
, p.
104116
.10.1016/j.conengprac.2019.104116
21.
Sonnenburg
,
C. R.
,
2013
, “
Modeling, Identification, and Control of an Unmanned Surface Vehicle
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
22.
Nomoto
,
K.
,
Taguchi
,
K.
,
Honda
,
K.
, and
Hirano
,
S.
,
1956
, “
On the Steering Qualities of Ships
,”
J. Zosen Kiokai
,
1956
(
99
), pp.
75
82
.10.2534/jjasnaoe1952.1956.99_75
23.
Wen
,
Y.
,
Tao
,
W.
,
Zhu
,
M.
,
Zhou
,
J.
, and
Xiao
,
C.
,
2020
, “
Characteristic Model-Based Path Following Controller Design for the Unmanned Surface Vessel
,”
Appl. Ocean Res.
,
101
, p.
102293
.10.1016/j.apor.2020.102293
24.
Man
,
Z.
,
Axel
,
H.
, and
Yuan-Qiao
,
W.
,
2018
, “
Identification-Based Controller Design Using Cloud Model for Course-Keeping of Ships in Waves
,”
Eng. Appl. Artif. Intell.
,
75
, pp.
22
35
.10.1016/j.engappai.2018.07.011
25.
Liu
,
C.
,
Zheng
,
H.
,
Negenborn
,
R.
,
Chu
,
X.
, and
Xie
,
S.
,
2021
, “
Adaptive Predictive Path Following Control Based on Least Squares Support Vector Machines for Underactuated Autonomous Vessels
,”
Asian J. Control
,
23
(
1
), pp.
432
448
.10.1002/asjc.2208
26.
Zhang
,
T.
,
Qin
,
B.
, and
Zou
,
Y.
,
2017
, “
Identification Methods for Robot Payload Dynamical Parameters
,”
J. Univ. Sci. Technol. Beijing
,
39
(
12
), pp.
1907
1912
.10.13374/j.issn2095-9389.2017.12.018
27.
Zhu
,
M.
,
Hahn
,
A.
,
Wen
,
Y.-Q.
, and
Bolles
,
A.
,
2017
, “
Identification-Based Simplified Model of Large Container Ships Using Support Vector Machines and Artificial Bee Colony Algorithm
,”
Appl. Ocean Res.
,
68
, pp.
249
261
.10.1016/j.apor.2017.09.006
28.
Bonci
,
M.
,
Viviani
,
M.
,
Broglia
,
R.
, and
Dubbioso
,
G.
,
2015
, “
Method for Estimating Parameters of Practical Ship Manoeuvring Models Based on the Combination of Ranse Computations and System Identification
,”
Appl. Ocean Research
,
52
, pp.
274
294
.10.1016/j.apor.2015.06.005
29.
Dai
,
S.-L.
,
Wang
,
C.
, and
Luo
,
F.
,
2012
, “
Identification and Learning Control of Ocean Surface Ship Using Neural Networks
,”
IEEE Trans. Ind. Inf.
,
8
(
4
), pp.
801
810
.10.1109/TII.2012.2205584
30.
Wang
,
Z.
,
Zou
,
Z.
, and
Guedes Soares
,
C.
,
2019
, “
Identification of Ship Manoeuvring Motion Based on nu-Support Vector Machine
,”
Ocean Eng.
,
183
, pp.
270
281
.10.1016/j.oceaneng.2019.04.085
31.
Witkowska
,
A.
,
Armínski
,
K.
,
Zubowicz
,
T.
,
Ossowski
,
F.
, and
Śmierzchalski
,
R.
,
2020
, “
Autonomous Ship Utility Model Parameter Estimation Utilising Extended Kalman Filter
,”
Advanced, Contemporary Control
, Łódź, Poland, June 22–25, pp.
1531
1542
.10.1007/978-3-030-50936-1_127
32.
Perera
,
L. P.
,
Oliveira
,
P.
, and
Guedes Soares
,
C.
,
2016
, “
System Identification of Vessel Steering With Unstructured Uncertainties by Persistent Excitation Maneuvers
,”
IEEE J. Oceanic Eng.
,
41
(
3
), pp.
1
14
.10.1109/JOE.2015.2460871
33.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN'95-International Conference on Neural Networks
, Perth, WA, Australia, Nov. 27–Dec. 1, pp.
1942
1948
.10.1109/ICNN.1995.488968
34.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
MHS'95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
, Nagoya, Japan, Oct. 4–6, pp.
39
43
.10.1109/MHS.1995.494215
35.
Fossen
,
T. I.
, and
Pettersen
,
K. Y.
,
2014
, “
On Uniform Semiglobal Exponential Stability (Usges) of Proportional Line-of-Sight Guidance Laws
,”
Automatica
,
50
(
11
), pp.
2912
2917
.10.1016/j.automatica.2014.10.018
36.
Xu
,
H.
, and
Guedes Soares
,
C.
,
2016
, “
Vector Field Path Following for Surface Marine Vessel and Parameter Identification Based on ls-Svm
,”
Ocean Eng.
,
113
, pp.
151
161
.10.1016/j.oceaneng.2015.12.037
37.
Hinostroza
,
M. A.
,
Xu
,
H.
, and
Soares
,
C. G.
,
2019
, “
Cooperative Operation of Autonomous Surface Vehicles for Maintaining Formation in Complex Marine Environment
,”
Ocean Eng.
,
183
(
July 1
), pp.
132
154
.10.1016/j.oceaneng.2019.04.098
38.
Liu
,
L.
,
Wang
,
D.
,
Peng
,
Z.
,
Gu
,
N.
, and
Zhang
,
B.
,
2017
, “
Coordinated Path-Following of Underactuated Unmanned Surface Vehicles With Limited Torques Over a Closed Curve
,” 13th IEEE International Conference on Control & Automation (
ICCA
), Ohrid, Macedonia, July 3–6, pp.
964
969
.10.1109/ICCA.2017.8003191
39.
Caccia
,
M.
,
Bono
,
R.
,
Bruzzone
,
G.
,
Spirandelli
,
E.
,
Veruggio
,
G.
,
Stortini
,
A.
, and
Capodaglio
,
G.
,
2005
, “
Sampling Sea Surfaces With Sesamo: An Autonomous Craft for the Study of Sea-Air Interactions
,”
IEEE Robot. Autom. Mag.
,
12
(
3
), pp.
95
105
.10.1109/MRA.2005.1511873
40.
Guerreiro
,
B. J.
,
Silvestre
,
C.
,
Cunha
,
R.
, and
Pascoal
,
A.
,
2014
, “
Trajectory Tracking Nonlinear Model Predictive Control for Autonomous Surface Craft
,”
IEEE Trans. Control Syst. Technol.
,
22
(
6
), pp.
2160
2175
.10.1109/TCST.2014.2303805
41.
Abdelaal
,
M.
,
Franzle
,
M.
, and
Hahn
,
A.
,
2018
, “
Nonlinear Model Predictive Control for Trajectory Tracking and Collision Avoidance of Underactuated Vessels With Disturbances
,”
Ocean Eng.
,
160
, pp.
168
180
.10.1016/j.oceaneng.2018.04.026
42.
Fossen
,
T. I.
, and
Strand
,
J. P.
,
1999
, “
Tutorial on Nonlinear Backstepping: Applications to Ship Control
,”
Model., Identif. Control.
, 20(2), pp.
83
135
.10.4173/mic.1999.2.3
43.
Ashrafiuon
,
H.
,
Muske
,
K. R.
,
McNinch
,
L. C.
, and
Soltan
,
R. A.
,
2008
, “
Sliding-Mode Tracking Control of Surface Vessels
,”
IEEE Trans. Indus. Electron.
,
55
(
11
), pp.
4004
4012
.10.1109/TIE.2008.2005933
44.
McNinch
,
L. C.
, and
Ashrafıuon
,
H.
,
2011
, “
Predictive and Sliding Mode Cascade Control for Unmanned Surface Vessels
,”
Proceedings of the American Control Conference
, San Francisco, CA, June 29–July 1, pp.
184
189
.10.1109/ACC.2011.5991049
45.
Liao
,
Y-L.
,
Zhang
,
M-J.
,
Wan
,
L.
, and
Li
,
Y.
,
2016
, “
Trajectory Tracking Control for Underactuated Unmanned Surface Vehicles With Dynamic Uncertainties
,”
J. Central South Univ.
,
23
(
2
), pp.
370
378
.10.1007/s11771-016-3082-4
46.
Liu
,
J.
,
2012
,
Sliding Mode Variable Structure Control MATLAB Simulation Tsinghua
,
University Press Co., Ltd
47.
Li
,
T.
,
Zhao
,
R.
,
Chen
,
C. P.
,
Fang
,
L.
, and
Liu
,
C.
,
2018
, “
Finite-Time Formation Control of Underactuated Ships Using Nonlinear Sliding Mode Control
,”
IEEE Trans. Cybern.
,
48
(
11
), pp.
3243
3253
.10.1109/TCYB.2018.2794968
48.
Faramin
,
M.
,
Goudarzi
,
R.
, and
Maleki
,
A.
,
2019
, “
Track-Keeping Observer-Based Robust Adaptive Control of an Unmanned Surface Vessel by Applying a 4-Dof Maneuvering Model
,”
Ocean Eng.
,
183
, pp.
11
23
.10.1016/j.oceaneng.2019.04.051
49.
Bartoszewicz
,
A.
, and
Adamiak
,
K.
,
2020
, “
Discrete-Time Sliding-Mode Control With a Desired Switching Variable Generator
,”
IEEE Trans. Autom. Control
,
65
(
4
), pp.
1807
1814
.10.1109/TAC.2019.2934393
50.
Song
,
L.
,
Xu
,
C.
,
Hao
,
L.
,
Yao
,
J.
, and
Guo
,
R.
,
2022
, “
Research on Pid Parameter Tuning and Optimization Based on Sac-Auto for Usv Path Following
,”
J. Mar. Sci. Eng.
,
10
(
12
), p.
1847
.10.3390/jmse10121847
51.
Miao
,
R.
,
Dong
,
Z.
,
Wan
,
L.
, and
Zeng
,
J.
,
2018
, “
Heading Control System Design for a Micro-Usv Based on an Adaptive Expert s-Pid Algorithm
,”
Pol. Maritime Res.
,
25
(
2
), pp.
6
13
.10.2478/pomr-2018-0049
52.
Guo
,
R.
, and
Yuan
,
W.
,
2021
, “
Research on Path Tracking Control Method of Unmanned Surface Vehicle Based on Deep Reinforcement Learning
,” In
International Symposium on Artificial Intelligence and Robotics 2021
, pp.
576
582
. Vol.
11884
,
SPIE
,
53.
Zhao
,
B.
,
Zhang
,
X.
,
Liang
,
C.
, and
Han
,
X.
,
2021
, “
An Improved Model Predictive Control for Path Following of Usv Based on Global Course Constraint and Event-Triggered Mechanism
,”
IEEE Access
,
9
, pp.
79725
79734
.10.1109/ACCESS.2021.3084844
54.
Li
,
M.
,
Guo
,
C.
,
Yu
,
H.
, and
Yuan
,
Y.
,
2022
, “
Line of-Sight-Based Global Finite-Time Stable Path Following Control of Unmanned Surface Vehicles With Actuator Saturation
,”
ISA Transactions
,
125
, pp.
306
317
.10.1016/j.isatra.2021.07.009
55.
Zheng
,
Y.
,
Tao
,
J.
,
Sun
,
Q.
,
Sun
,
H.
,
Chen
,
Z.
,
Sun
,
M.
, and
Xie
,
G.
,
2022
, “
Soft Actor–Critic Based Active Disturbance Rejection Path Following Control for Unmanned Surface Vessel Under Wind and Wave Disturbances
,”
Ocean Eng.
,
247
, p.
110631
.10.1016/j.oceaneng.2022.110631
56.
Zhong
,
W.
,
Li
,
H.
,
Meng
,
Y.
,
Yang
,
X.
,
Feng
,
Y.
,
Ye
,
H.
, and
Liu
,
W.
,
2022
, “
Usv Path Following Controller Based on Ddpg With Composite State-Space and Dynamic Reward Function
,”
Ocean Eng.
,
266
, p.
112449
.10.1016/j.oceaneng.2022.112449
57.
Nomoto
,
K.
,
Taguchi
,
K.
,
Honda
,
K.
, and
Hirano
,
S.
,
1957
, “
On the Steering Qualities of Ships
,”
Int. Shipbuilding Progress
,
4
(
35
), pp.
354
370
.10.3233/ISP-1957-43504
58.
Shin
,
J.
,
Kwak
,
D. J.
, and
Lee
,
Y-I.
,
2017
, “
Adaptive Path-Following Control for an Unmanned Surface Vessel Using an Identified Dynamic Model
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1143
1153
.10.1109/TMECH.2017.2651057
59.
Perera
,
L. P.
, and
Soares
,
C. G.
,
2012
, “
Pre-Filtered Sliding Mode Control for Nonlinear Ship Steering Associated With Disturbances
,”
Ocean Eng.
,
51
, pp.
49
62
.10.1016/j.oceaneng.2012.04.014
60.
Dai
,
Y.
,
2010
, “
Particle Swarm Optimization Methods and Its Applications in Parameter Identification of Ship Motions
,” Ph.D. thesis,
Harbin Engineering University
,
Harbin, China
.
61.
Cui
,
R.
,
2015
, “
Research on the Parameter Identification Method of Ship Pitching and Heaving Motions Based on Improved Particle Swarm Optimization
,” Master's thesis,
Harbin Engineering University
,
Harbin, China
.
62.
Zhai
,
C.
, and
Wu
,
Z.
,
2000
, “
Variable Structure Control Design for Uncertain Discrete Time Systems
,”
Acta Automatica Sin.
,
26
(
2
), pp.
184
191
.http://www.aas.net.cn/article/id/14679
63.
Fossen
,
T. I.
,
Breivik
,
M.
, and
Skjetne
,
R.
,
2003
, “
Line-of-Sight Path Following of Underactuated Marine Craft
,”
IFAC Proceed. Vol.
,
36
(
21
), pp.
211
216
.10.1016/S1474-6670(17)37809-6
64.
Faltinsen
,
O. M.
,
2005
,
Hydrodynamics of High Speed Marine Vehicles
,
Cambridge University Press
,
Cambridge, UK
.
You do not currently have access to this content.