Abstract

Distributed multi-agent systems are becoming increasingly crucial for diverse applications in robotics because of their capacity for scalability, efficiency, robustness, resilience, and the ability to accomplish complex tasks. Controlling these large-scale swarms by relying on local information is very challenging. Although centralized methods are generally efficient or optimal, they face the issue of scalability and are often impractical. Given the challenge of finding an efficient decentralized controller that uses only local information to accomplish a global task, we propose a learning-based approach to decentralized control using supervised learning. Our approach entails training controllers to imitate a centralized controller's behavior but uses only local information to make decisions. The controller is parameterized by aggregation graph neural networks (GNNs) that integrate information from remote neighbors. The problems of segregation and aggregation of a swarm of heterogeneous agents are explored in 2D and 3D point mass systems as two use cases to illustrate the effectiveness of the proposed framework. The decentralized controller is trained using data from a centralized (expert) controller derived from the concept of artificial differential potential. Our learned models successfully transfer to actual robot dynamics in physics-based Turtlebot3 robot swarms in Gazebo/ROS2 simulations and hardware implementation and Crazyflie quadrotor swarms in Pybullet simulations. Our experiments show that our controller performs comparably to the centralized controller and demonstrates superior performance compared to a local controller. Additionally, we showed that the controller is scalable by analyzing larger teams and diverse groups with up to 100 robots.

References

1.
Yliniemi
,
L.
,
Agogino
,
A. K.
, and
Tumer
,
K.
,
2014
, “
Multirobot Coordination for Space Exploration
,”
AI Mag.
,
35
(
4
), pp.
61
74
.10.1609/aimag.v35i4.2556
2.
Omotuyi
,
O.
,
Pokhrel
,
S.
, and
Sharma
,
R.
,
2021
, “
Distributed Quadrotor Uav Tracking Using a Team of Unmanned Ground Vehicles
,”
AIAA
Paper No. 2021–0266.10.2514/6.2021-0266
3.
Ronzoni
,
M.
,
Accorsi
,
R.
,
Botti
,
L.
, and
Manzini
,
R.
,
2021
, “
A Support-Design Framework for Cooperative Robots Systems in Labor-Intensive Manufacturing Processes
,”
J. Manuf. Syst.
,
61
, pp.
646
657
.10.1016/j.jmsy.2021.10.008
4.
Queralta
,
J. P.
,
Taipalmaa
,
J.
,
Pullinen
,
B. C.
,
Sarker
,
V. K.
,
Gia
,
T. N.
,
Tenhunen
,
H.
,
Gabbouj
,
M.
,
Raitoharju
,
J.
, and
Westerlund
,
T.
,
2020
, “
Collaborative Multi-Robot Search and Rescue: Planning, Coordination, Perception, and Active Vision
,”
IEEE Access
,
8
, pp.
191617
191643
.10.1109/ACCESS.2020.3030190
5.
Chen
,
B.
, and
Cheng
,
H. H.
,
2010
, “
A Review of the Applications of Agent Technology in Traffic and Transportation Systems
,”
IEEE Trans. Intell. Transp. Syst.
,
11
(
2
), pp.
485
497
.10.1109/TITS.2010.2048313
6.
Ferreira Filho
,
E. B.
, and
Pimenta
,
L. C.
,
2020
, “
Segregation of Heterogeneous Swarms of Robots in Curves
,” IEEE International Conference on Robotics and Automation (
ICRA
), Paris, France, May 31–Aug. 31, pp.
7173
7179
.10.1109/ICRA40945.2020.9196851
7.
Leonard
,
N. E.
, and
Fiorelli
,
E.
,
2001
, “
Virtual Leaders, Artificial Potentials and Coordinated Control of Groups
,”
Proceedings of the 40th IEEE Conference on Decision and Control
(
Cat. No. 01CH37228
), Orlando, FL, Dec. 4–7, pp.
2968
2973
.10.1109/CDC.2001.980728
8.
Balch
,
T.
, and
Arkin
,
R. C.
,
1998
, “
Behavior-Based Formation Control for Multirobot Teams
,”
IEEE Trans. Robot. Automation
,
14
(
6
), pp.
926
939
.10.1109/70.736776
9.
Belta
,
C.
, and
Kumar
,
V.
,
2004
, “
Abstraction and Control for Groups of Robots
,”
IEEE Trans. Robot.
,
20
(
5
), pp.
865
875
.10.1109/TRO.2004.829498
10.
Li
,
L.
,
Martinoli
,
A.
, and
Abu-Mostafa
,
Y.
,
2003
, “
Diversity and Specialization in Collaborative Swarm Systems
,”
Proceedings of the Second International Workshop on Mathematics and Algorithms of Social Insects
, Atlanta, GA, Dec, pp.
91
98
.https://home.work.caltech.edu/pub/Li2003measure.pdf
11.
Edwards
,
V.
,
Rezeck
,
P.
,
Chaimowicz
,
L.
, and
Hsieh
,
M. A.
,
2016
, “
Segregation of Heterogeneous Robotics Swarms Via Convex Optimization
,”
ASME
Paper No. DSCC2016-9653.10.1115/DSCC2016-9653
12.
Reynolds
,
C. W.
,
1987
, “
Flocks, Herds and Schools: A Distributed Behavioral Model
,”
ACM SIGGRAPH Computer Graphics
, 21(4), pp.
25
34
.10.1145/37402.37406
13.
Olfati-Saber
,
R.
,
2006
, “
Flocking for Multi-Agent Dynamic Systems: Algorithms and Theory
,”
IEEE Trans. Automatic Control
,
51
(
3
), pp.
401
420
.10.1109/TAC.2005.864190
14.
Pimenta
,
L. C.
,
Pereira
,
G. A.
,
Michael
,
N.
,
Mesquita
,
R. C.
,
Bosque
,
M. M.
,
Chaimowicz
,
L.
, and
Kumar
,
V.
,
2013
, “
Swarm Coordination Based on Smoothed Particle Hydrodynamics Technique
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
383
399
.10.1109/TRO.2012.2234294
15.
Batlle
,
E.
, and
Wilkinson
,
D. G.
,
2012
, “
Molecular Mechanisms of Cell Segregation and Boundary Formation in Development and Tumorigenesis
,”
Cold Spring Harb. Perspect. Biol.
,
4
(
1
), p.
a008227
.10.1101/cshperspect.a008227
16.
Ame
,
J.-M.
,
Rivault
,
C.
, and
Deneubourg
,
J.-L.
,
2004
, “
Cockroach Aggregation Based on Strain Odour Recognition
,”
Anim. Behav.
,
68
(
4
), pp.
793
801
.10.1016/j.anbehav.2004.01.009
17.
Lesh-Laurie
,
G. E.
,
1974
, “
Tentacle Morphogenesis in Hydra: A Morphological and Biochemical Analysis of the Effect of Actinomycin d
,”
Am. Zoologist
,
14
(
2
), pp.
591
602
.10.1093/icb/14.2.591
18.
Camazine
,
S.
,
Deneubourg
,
J.-L.
,
Franks
,
N. R.
,
Sneyd
,
J.
,
Theraula
,
G.
, and
Bonabeau
,
E.
,
2020
, “
Self-Organization in Biological Systems
,”
Self-Organization in Biological Systems
,
Princeton University Press
, Princeton, NJ.
19.
Parrish
,
J. K.
, and
Edelstein-Keshet
,
L.
,
1999
, “
Complexity, Pattern, and Evolutionary Trade-Offs in Animal Aggregation
,”
Science
,
284
(
5411
), pp.
99
101
.10.1126/science.284.5411.99
20.
Jeanson
,
R.
,
Rivault
,
C.
,
Deneubourg
,
J.-L.
,
Blanco
,
S.
,
Fournier
,
R.
,
Jost
,
C.
, and
Theraulaz
,
G.
,
2005
, “
Self-Organized Aggregation in Cockroaches
,”
Anim. Behav.
,
69
(
1
), pp.
169
180
.10.1016/j.anbehav.2004.02.009
21.
Garnier
,
S.
,
Jost
,
C.
,
Gautrais
,
J.
,
Asadpour
,
M.
,
Caprari
,
G.
,
Jeanson
,
R.
,
Grimal
,
A.
, and
Theraulaz
,
G.
,
2008
, “
The Embodiment of Cockroach Aggregation Behavior in a Group of Micro-Robots
,”
Artif. Life
,
14
(
4
), pp.
387
408
.10.1162/artl.2008.14.4.14400
22.
Correll
,
N.
, and
Martinoli
,
A.
,
2011
, “
Modeling and Designing Self-Organized Aggregation in a Swarm of Miniature Robots
,”
Int. J. Rob. Res.
,
30
(
5
), pp.
615
626
.10.1177/0278364911403017
23.
Gauci
,
M.
,
Chen
,
J.
,
Dodd
,
T. J.
, and
Groß
,
R.
,
2014
, “
Evolving Aggregation Behaviors in Multi-Robot Systems With Binary Sensors
,”
Distributed Autonomous Robotic Systems: The 11th International Symposium
, Baltimore, MD, Nov, pp.
355
367
.10.1007/978-3-642-55146-8_25
24.
Kumar
,
M.
,
Garg
,
D. P.
, and
Kumar
,
V.
,
2010
, “
Segregation of Heterogeneous Units in a Swarm of Robotic Agents
,”
IEEE Trans. Autom. Control
,
55
(
3
), pp.
743
748
.10.1109/TAC.2010.2040494
25.
Kumar
,
M.
, and
Garg
,
D. P.
,
2011
, “
Aggregation of Heterogeneous Units in a Swarm of Robotic Agents
,”
Fourth International Symposium on Resilient Control Systems
, Boise, ID, Aug. 9–11, pp.
107
112
.10.1109/ISRCS.2011.6016099
26.
Steinberg
,
M. S.
,
1963
, “
Reconstruction of Tissues by Dissociated Cells: Some Morphogenetic Tissue Movements and the Sorting Out of Embryonic Cells May Have a Common Explanation
,”
Science
,
141
(
3579
), pp.
401
408
.10.1126/science.141.3579.401
27.
Gomes
,
J.
,
Urbano
,
P.
, and
Christensen
,
A. L.
,
2013
, “
Evolution of Swarm Robotics Systems With Novelty Search
,”
Swarm Intell.
,
7
(
2–3
), pp.
115
144
.10.1007/s11721-013-0081-z
28.
Inácio
,
F. R.
,
Macharet
,
D. G.
, and
Chaimowicz
,
L.
,
2019
, “
Pso-Based Strategy for the Segregation of Heterogeneous Robotic Swarms
,”
J. Comput. Sci.
,
31
, pp.
86
94
.10.1016/j.jocs.2018.12.008
29.
Kernbach
,
S.
,
Thenius
,
R.
,
Kernbach
,
O.
, and
Schmickl
,
T.
,
2009
, “
Re-Embodiment of Honeybee Aggregation Behavior in an Artificial Micro-Robotic System
,”
Adaptive Behav.
,
17
(
3
), pp.
237
259
.10.1177/1059712309104966
30.
Bayindir
,
L.
,
2012
, “
A Probabilistic Geometric Model of Self-Organized Aggregation in Swarm Robotic Systems
,”
Ph.D thesis
, Middle East Technical University, Ankara, Turkey.https://open.metu.edu.tr/handle/11511/22295
31.
Santos
,
V. G.
,
Pimenta
,
L. C.
, and
Chaimowicz
,
L.
,
2014
, “
Segregation of Multiple Heterogeneous Units in a Robotic Swarm
,” IEEE International Conference on Robotics and Automation (
ICRA
), Hong Kong, China, May 31–June 7, pp.
1112
1117
.10.1109/ICRA.2014.6906993
32.
Gupta
,
S.
,
Chaudhary
,
S.
,
Maurya
,
D.
,
Joshi
,
S. K.
,
Tripathy
,
N. S.
, and
Shah
,
S. V.
,
2022
, “
Segregation of Multiple Robots Using Model Predictive Control With Asynchronous Path Smoothing
,” IEEE Conference on Control Technology and Applications (
CCTA
), Trieste, Italy, Aug. 23–25, pp.
1378
1383
.10.1109/CCTA49430.2022.9966011
33.
Shlyakhov
,
N.
,
Vatamaniuk
,
I.
, and
Ronzhin
,
A.
,
2017
, “
Survey of Methods and Algorithms of Robot Swarm Aggregation
,”
J. Phys.: Conf. Ser.
,
803
, p.
012146
.10.1088/1742-6596/803/1/012146
34.
Trianni
,
V.
,
Groß
,
R.
,
Labella
,
T. H.
,
Şahin
,
E.
, and
Dorigo
,
M.
,
2003
, “
Evolving Aggregation Behaviors in a Swarm of Robots
,”
Advances in Artificial Life: Seventh European Conference
, ECAL, Dortmund, Germany, Sept. 14–17, pp.
865
874
.
35.
Santos
,
V. G.
,
Pires
,
A. G.
,
Alitappeh
,
R. J.
,
Rezeck
,
P. A.
,
Pimenta
,
L. C.
,
Macharet
,
D. G.
, and
Chaimowicz
,
L.
,
2020
, “
Spatial Segregative Behaviors in Robotic Swarms Using Differential Potentials
,”
Swarm Intell.
,
14
(
4
), pp.
259
284
.10.1007/s11721-020-00184-0
36.
Edson Filho
,
B.
, and
Pimenta
,
L. C.
,
2015
, “
Segregating Multiple Groups of Heterogeneous Units in Robot Swarms Using Abstractions
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
401
406
.10.1109/IROS.2015.7353404
37.
Inácio
,
F. R.
,
Macharet
,
D. G.
, and
Chaimowicz
,
L.
,
2018
, “
United we Move: Decentralized Segregated Robotic Swarm Navigation
,”
Distributed Autonomous Robotic Systems: The 13th International Symposium
, London, UK, Nov. 7–9, pp.
313
326
.10.1007/978-3-319-73008-0_22
38.
Santos
,
V. G.
, and
Chaimowicz
,
L.
,
2014
, “
Cohesion and Segregation in Swarm Navigation
,”
Robotica
,
32
(
2
), pp.
209
223
.10.1017/S0263574714000563
39.
Witsenhausen
,
H. S.
,
1968
, “
A Counterexample in Stochastic Optimum Control
,”
SIAM J. Control
,
6
(
1
), pp.
131
147
.10.1137/0306011
40.
Gama
,
F.
,
Marques
,
A. G.
,
Leus
,
G.
, and
Ribeiro
,
A.
,
2019
, “
Convolutional Neural Network Architectures for Signals Supported on Graphs
,”
IEEE Trans. Signal Process.
,
67
(
4
), pp.
1034
1049
.10.1109/TSP.2018.2887403
41.
Li
,
Q.
,
Gama
,
F.
,
Ribeiro
,
A.
, and
Prorok
,
A.
,
2020
, “
Graph Neural Networks for Decentralized Multi-Robot Path Planning
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Las Vegas, NV, Oct. 24–Jan. 24, pp.
11785
11792
.10.1109/IROS45743.2020.9341668
42.
Tolstaya
,
E.
,
Gama
,
F.
,
Paulos
,
J.
,
Pappas
,
G.
,
Kumar
,
V.
, and
Ribeiro
,
A.
,
2020
, “
Learning Decentralized Controllers for Robot Swarms With Graph Neural Networks
,”
Conference on Robot Learning
, Osaka, Japan, Nov. 16–18, pp.
671
682
.https://www.researchgate.net/publication/332010803_Learning_Decentralized_Controllers_for_Robot_Swarms_with_Graph_Neural_Networks
43.
Khan
,
A.
,
Tolstaya
,
E.
,
Ribeiro
,
A.
, and
Kumar
,
V.
,
2020
, “
Graph Policy Gradients for Large Scale Robot Control
,”
Conference on Robot Learning
, Osaka, Japan, Nov. 16–18, pp.
823
834
.https://proceedings.mlr.press/v100/khan20a/khan20a.pdf
44.
Khan
,
A.
,
Kumar
,
V.
, and
Ribeiro
,
A.
,
2021
, “
Large Scale Distributed Collaborative Unlabeled Motion Planning With Graph Policy Gradients
,”
IEEE Rob. Autom. Lett.
,
6
(
3
), pp.
5340
5347
.10.1109/LRA.2021.3074885
45.
Tolstaya
,
E.
,
Gama
,
F.
,
Paulos
,
J.
,
Pappas
,
G.
,
Kumar
,
V.
, and
Ribeiro
,
A.
,
2020
, “
Learning Decentralized Controllers for Robot Swarms With Graph Neural Networks
,”
Proceedings of the Conference on Robot Learning, PMLR
,
L. P.
Kaelbling
,
D.
Kragic
, and
K.
Sugiura
, eds., Vol.
100
, pp.
671
682
.
46.
Gama
,
F.
,
Li
,
Q.
,
Tolstaya
,
E.
,
Prorok
,
A.
, and
Ribeiro
,
A.
,
2020
, “
Decentralized Control With Graph Neural Networks
,” arXiv preprint arXiv:2012.14906.
47.
Tolstaya
,
E.
,
Paulos
,
J.
,
Kumar
,
V.
, and
Ribeiro
,
A.
,
2020
, “
Multi-Robot Coverage and Exploration Using Spatial Graph Neural Networks
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Prague, Czech Republic, Sept. 27–Oct. 1, pp.
8944
8950
.10.1109/IROS51168.2021.9636675
48.
Blumenkamp
,
J.
,
Morad
,
S.
,
Gielis
,
J.
,
Li
,
Q.
, and
Prorok
,
A.
,
2022
, “
A Framework for Real-World Multi-Robot Systems Running Decentralized Gnn-Based Policies
,”
International Conference on Robotics and Automation
(
ICRA
), Philadelphia, PA, May 23–27, pp.
8772
8778
.10.1109/ICRA46639.2022.9811744
49.
Omotuyi
,
O.
, and
Kumar
,
M.
,
2022
, “
Learning Decentralized Controllers for Segregation of Heterogeneous Robot Swarms With Graph Neural Networks
,” International Conference on Manipulation, Automation and Robotics at Small Scales (
MARSS
), Toronto, ON, Canada, July 25–29, pp.
1
6
.10.1109/MARSS55884.2022.9870482
50.
Gama
,
F.
,
Li
,
Q.
,
Tolstaya
,
E.
,
Prorok
,
A.
, and
Ribeiro
,
A. R.
,
2022
, “
Synthesizing Decentralized Controllers With Graph Neural Networks and Imitation Learning
,”
IEEE Trans. Signal Process.
,
70
, pp.
1932
1946
.10.1109/TSP.2022.3166401
51.
Gama
,
F.
,
Marques
,
A. G.
,
Ribeiro
,
A.
, and
Leus
,
G.
,
2019
, “
Aggregation Graph Neural Networks
,”
ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(
ICASSP
), Brighton, UK, May 12–17, pp.
4943
4947
.10.1109/ICASSP.2019.8682975
52.
Ferreira-Filho
,
E. B.
, and
Pimenta
,
L. C.
,
2019
, “
Abstraction Based Approach for Segregation in Heterogeneous Robotic Swarms
,”
Rob. Autom. Syst.
,
122
, p.
103295
.10.1016/j.robot.2019.103295
53.
Omotuyi
,
O.
, and
Kumar
,
M.
,
2021
, “
Uav Visual-Inertial Dynamics (vi-d) Odometry Using Unscented Kalman Filter
,”
IFAC-PapersOnLine
,
54
(
20
), pp.
814
819
.10.1016/j.ifacol.2021.11.272
54.
Omotuyi
,
O.
,
2021
, “
Dynamics-Enabled Localization of Uavs Using Unscented Kalman Filter
,”
Master's thesis
,
University of Cincinnati
, Cincinnati, OH.https://www.proquest.com/openview/883bfbd7cc64165d3f206d9665049379/1?pqorigsite=gscholar&cbl=18750&diss=y
55.
Michael
,
N.
,
Mellinger
,
D.
,
Lindsey
,
Q.
, and
Kumar
,
V.
,
2010
, “
The Grasp Multiple Micro-Uav Testbed
,”
IEEE Rob. Autom. Mag.
,
17
(
3
), pp.
56
65
.10.1109/MRA.2010.937855
56.
Ross
,
S.
,
Gordon
,
G.
, and
Bagnell
,
D.
,
2011
, “
A Reduction of Imitation Learning and Structured Prediction to No-Regret Online Learning
,”
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
, Fort Lauderdale, FL, Apr. 11–13, pp.
627
635
.https://proceedings.mlr.press/v15/ross11a.html
57.
Panerati
,
J.
,
Zheng
,
H.
,
Zhou
,
S.
,
Xu
,
J.
,
Prorok
,
A.
, and
Schoellig
,
A. P.
,
2021
, “
Learning to Fly-a Gym Environment With Pybullet Physics for Reinforcement Learning of Multi-Agent Quadcopter Control
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Prague, Czech Republic, Sept. 27–Oct. 1, pp.
7512
7519
.10.1109/IROS51168.2021.9635857
58.
Ayomoh
,
M. K.
,
Omotuyi
,
O. A.
,
Roux
,
A.
, and
Olufayo
,
O. A.
,
2018
, “
Robot Navigation Model in a Multi-Target Domain Amidst Static and Dynamic Obstacles
,” Proceedings of the IASTED International Conference Intelligent Systems and Control (
ISC 2018
), Calgary, AB, Canada, July 16–17, pp.
44
51
.10.2316/P.2018.858-015
You do not currently have access to this content.