Abstract

External and internal convertible (EIC) form-based motion control is one of the effective designs of simultaneous trajectory tracking and balance for underactuated balance robots. Under certain conditions, the EIC-based control design is shown to lead to uncontrolled robot motion. To overcome this issue, we present a Gaussian process (GP)-based data-driven learning control for underactuated balance robots with the EIC modeling structure. Two GP-based learning controllers are presented by using the EIC property. The partial EIC (PEIC)-based control design partitions the robotic dynamics into a fully actuated subsystem and a reduced-order underactuated subsystem. The null-space EIC (NEIC)-based control compensates for the uncontrolled motion in a subspace, while the other closed-loop dynamics are not affected. Under the PEIC- and NEIC-based, the tracking and balance tasks are guaranteed, and convergence rate and bounded errors are achieved without causing any uncontrolled motion by the original EIC-based control. We validate the results and demonstrate the GP-based learning control design using two inverted pendulum platforms.

References

1.
Kant
,
N.
, and
Mukherjee
,
R.
,
2020
, “
Orbital Stabilization of Underactuated Systems Using Virtual Holonomic Constraints and Impulse Controlled Poincaré Maps
,”
Syst. Control Lett.
,
146
, p.
104813
.10.1016/j.sysconle.2020.104813
2.
Han
,
F.
, and
Yi
,
J.
,
2023
, “
On the Learned Balance Manifold of Underactuated Balance Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), London, UK, May 29–June 2, pp.
12254
12260
.10.1109/ICRA48891.2023.10161088
3.
Han
,
F.
,
Jelvani
,
A.
,
Yi
,
J.
, and
Liu
,
T.
,
2022
, “
Coordinated Pose Control of Mobile Manipulation With an Unstable Bikebot Platform
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4550
4560
.10.1109/TMECH.2022.3157787
4.
Chen
,
K.
,
Yi
,
J.
, and
Song
,
D.
,
2023
, “
Gaussian-Process-Based Control of Underactuated Balance Robots With Guaranteed Performance
,”
IEEE Trans. Rob.
,
39
(
1
), pp.
572
589
.10.1109/TRO.2022.3203625
5.
Han
,
F.
, and
Yi
,
J.
,
2021
, “
Stable Learning-Based Tracking Control of Underactuated Balance Robots
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
1543
1550
.10.1109/LRA.2021.3056324
6.
Turrisi
,
G.
,
Capotondi
,
M.
,
Gaz
,
C.
,
Modugno
,
V.
,
Oriolo
,
G.
, and
Luca
,
A. D.
,
2022
, “
On-Line Learning for Planning and Control of Underactuated Robots With Uncertain Dynamics
,”
IEEE Rob. Autom. Lett.
,
7
(
1
), pp.
358
365
.10.1109/LRA.2021.3126899
7.
Beckers
,
T.
,
Kulić
,
D.
, and
Hirche
,
S.
,
2019
, “
Stable Gaussian Process Based Tracking Control of Euler–Lagrange Systems
,”
Automatica
,
103
, pp.
390
397
.10.1016/j.automatica.2019.01.023
8.
Chen
,
K.
, and
Yi
,
J.
,
2015
, “
On the Relationship Between Manifold Learning Latent Dynamics and Zero Dynamics for Human Bipedal Walking
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Hamburg, Germany, Sept. 28–Oct. 2, pp.
971
976
.10.1109/IROS.2015.7353488
9.
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Sinnet
,
R. W.
, and
Ames
,
A. D.
,
2014
, “
Models, Feedback Control, and Open Problems in 3D Bipedal Robotic Walking
,”
Automatica
,
50
(
8
), pp.
1955
1988
.10.1016/j.automatica.2014.04.021
10.
Han
,
F.
,
Huang
,
X.
,
Wang
,
Z.
,
Yi
,
J.
, and
Liu
,
T.
,
2022
, “
Autonomous Bikebot Control for Crossing Obstacles With Assistive Leg Impulsive Actuation
,”
IEEE/ASME Trans. Mechatron.
,
27
(
4
), pp.
1882
1890
.10.1109/TMECH.2022.3172909
11.
Shiriaev
,
A. S.
,
Perram
,
J. W.
, and
Canudas-de-Wit
,
C.
,
2005
, “
Constructive Tool for Orbital Stabilization of Underactuated Nonlinear Systems: Virtual Constraints Approach
,”
IEEE Trans. Autom. Control
,
50
(
8
), pp.
1164
1176
.10.1109/TAC.2005.852568
12.
de Wit
,
C. C.
,
Espiau
,
B.
, and
Urrea
,
C.
,
2002
, “
Orbital Stabilization of Underactuated Mechanical Systems
,”
IFAC Proc. Vol.
,
35
(
1
), pp.
527
532
.10.3182/20020721-6-ES-1901.00900
13.
Maggiore
,
M.
, and
Consolini
,
L.
,
2013
, “
Virtual Holonomic Constraints for Euler–Lagrange Systems
,”
IEEE Trans. Autom. Control
,
58
(
4
), pp.
1001
1008
.10.1109/TAC.2012.2215538
14.
Chevallereau
,
C.
,
Grizzle
,
J. W.
, and
Shih
,
C.-L.
,
2009
, “
Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
37
50
.10.1109/TRO.2008.2010366
15.
Fantoni
,
I.
,
Lozano
,
R.
, and
Spong
,
M. W.
,
2000
, “
Energy Based Control of Pendubot
,”
IEEE Trans. Autom. Control
,
45
(
4
), pp.
725
729
.10.1109/9.847110
16.
Xin
,
X.
, and
Kanedai
,
M.
,
2005
, “
Analysis of the Energy-Based Control for Swinging Up Two Pendulums
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
679
684
.10.1109/TAC.2005.846598
17.
Getz
,
N.
,
1995
, “
Dynamic Inversion of Nonlinear Maps With Applications to Nonlinear Control and Robotics
,” Ph.D. thesis,
Department of Electrical Engineering and Computer Science, University of California
,
Berkeley, CA
.
18.
Lambert
,
N. O.
,
Schindler
,
C. B.
,
Drew
,
D. S.
, and
Pister
,
K. S. J.
,
2021
, “
Nonholonomic Yaw Control of an Underactuated Flying Robot With Model-Based Reinforcement Learning
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
455
461
.10.1109/LRA.2020.3045930
19.
Beckers
,
T.
, and
Hirche
,
S.
,
2022
, “
Prediction With Approximated Gaussian Process Dynamical Models
,”
IEEE Trans. Autom. Control
,
67
(
12
), pp.
6460
6473
.10.1109/TAC.2021.3131988
20.
Lederer
,
A.
,
Yang
,
Z.
,
Jiao
,
J.
, and
Hirche
,
S.
,
2023
, “
Cooperative Control of Uncertain Multiagent Systems Via Distributed Gaussian Processes
,”
IEEE Trans. Autom. Control
,
68
(
5
), pp.
3091
3098
.10.1109/TAC.2022.3205424
21.
Deisenroth
,
M.
, and
Ng
,
J. W.
,
2015
, “
Distributed Gaussian Processes
,”
International Conference on Machine Learning
, Lille, France, July 6–11,
pp.
1481
1490
.https://proceedings.mlr.press/v37/deisenroth15.pdf
22.
Helwa
,
M. K.
,
Heins
,
A.
, and
Schoellig
,
A. P.
,
2019
, “
Provably Robust Learning-Based Approach for High-Accuracy Tracking Control of Lagrangian Systems
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1587
1594
.10.1109/LRA.2019.2896728
23.
Chen
,
K.
,
Yi
,
J.
, and
Song
,
D.
,
2019
, “
Gaussian Processes Model-Based Control of Underactuated Balance Robots
,” International Conference on Robotics and Automation (
ICRA
), Montreal, QC, Canada, May 20–24, pp.
4458
4464
.10.1109/ICRA.2019.8794097
24.
Han
,
F.
, and
Yi
,
J.
,
2024
, “
Gaussian Process-Enhanced, External and Internal Convertible (EIC) Form-Based Control of Underactuated Balance Robots
,”
Proceedings of the IEEE International Conference on Robotics and Automation
, Yokohama, Japan, May 13–17, pp.
8937
8933
.
25.
Wang
,
P.
,
Han
,
F.
, and
Yi
,
J.
,
2023
, “
Gyroscopic Balancer-Enhanced Motion Control of an Autonomous Bikebot
,”
ASME J. Dyn. Syst., Meas., Control
,
145
(
5
), p.
101002
.10.1115/1.4063014
26.
Srinivas
,
N.
,
Krause
,
A.
,
Kakade
,
S. M.
, and
Seeger
,
M. W.
,
2012
, “
Information-Theoretic Regret Bounds for Gaussian Process Optimization in the Bandit Setting
,”
IEEE Trans. Inf. Theory
,
58
(
5
), pp.
3250
3265
.10.1109/TIT.2011.2182033
27.
Apkarian
,
J.
,
Karam
,
P.
, and
Levis
,
M.
,
2011
,
Instructor Workbook: Inverted Pendulum Experiment for Matlab/Simulink Users
,
Quanser Inc
.,
Markham, ON, Canada
.
You do not currently have access to this content.