Abstract

This paper presents a modular approach to motion planning with provable stability guarantees for robots that move through changing environments via periodic locomotion behaviors. We focus on dynamic walkers as a paradigm for such systems, although the tools developed in this paper can be used to support general compositional approaches to robot motion planning with dynamic movement primitives (DMPs). By formulating the planning process as a switching system with multiple equilibria (SSME), we prove that the system's evolution remains within explicitly characterized trapping regions in the state space under suitable constraints on the frequency of switching among the DMPs. These conditions encapsulate the low-level stability limitations in a form that can be easily communicated to the planner. Furthermore, we show how the available primitives can be safely composed online in a receding horizon manner to enable the robot to react to moving obstacles. The proposed framework can be applied in a wide class of 3D bipedal walking models, and offers a modular approach for integrating readily available low-level locomotion control and high-level planning methods.

References

1.
Narkhede
,
K. S.
,
Motahar
,
M. S.
,
Veer
,
S.
, and
Poulakakis
,
I.
,
2023
, “
Reactive Gait Composition With Stability: Dynamic Walking Amidst Static and Moving Obstacles
,” arXiv:2303.16165.
2.
McGeer
,
T.
,
1990
, “
Passive Dynamic Walking
,”
Int. J. Rob. Res.
,
9
(
2
), pp.
62
82
.10.1177/027836499000900206
3.
Collins
,
S.
,
Ruina
,
A.
,
Tedrake
,
R.
, and
Wisse
,
M.
,
2005
, “
Efficient Bipedal Robots Based on Passive-Dynamic Walkers
,”
Science
,
307
(
5712
), pp.
1082
1085
.10.1126/science.1107799
4.
Hobbelen
,
D.
, and
Wisse
,
M.
,
2007
, “Limit Cycle Walking,”
Humanoid Robots: Human-Like Machines
,
M.
Hackel
, ed.,
Intech
,
Vienna, Austria
, pp.
277
294
.
5.
Ramezani
,
A.
,
Chung
,
S.-J.
, and
Hutchinson
,
S.
,
2017
, “
A Biomimetic Robotic Platform to Study Flight Specializations of Bats
,”
Sci. Rob.
,
2
(
3
), pp.
1
12
.
6.
Georgiades
,
C.
,
Nahon
,
M.
, and
Buehler
,
M.
,
2009
, “
Simulation of an Underwater Hexapod Robot
,”
Ocean Eng.
,
36
(
1
), pp.
39
47
.10.1016/j.oceaneng.2008.10.005
7.
Ijspeert
,
A. J.
,
Nakanishi
,
J.
,
Hoffmann
,
H.
,
Pastor
,
P.
, and
Schaal
,
S.
,
2013
, “
Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors
,”
Neural Comput.
,
25
(
2
), pp.
328
373
.10.1162/NECO_a_00393
8.
Motahar
,
M. S.
,
Veer
,
S.
, and
Poulakakis
,
I.
,
2016
, “
Composing Limit Cycles for Motion Planning of 3D Bipedal Walkers
,”
Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC)
, Las Vegas, NV, Dec. 12–14, pp.
6368
6374
.10.1109/CDC.2016.7799249
9.
Veer
,
S.
,
Motahar
,
M. S.
, and
Poulakakis
,
I.
,
2017
, “
Almost Driftless Navigation of 3D Limit-Cycle Walking Bipeds
,”
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Vancouver, BC, Canada, Sept. 24–28, pp.
5025
5030
.10.1109/IROS.2017.8206386
10.
LaSalle
,
J.
, and
Lefschetz
,
S.
,
1961
,
Stability by Liapunov's Direct Method With Applications
,
Academic Press
,
New York
.
11.
Veer
,
S.
, and
Poulakakis
,
I.
,
2020
, “
Switched Systems With Multiple Equilibria Under Disturbances: Boundedness and Practical Stability
,”
IEEE Trans. Autom. Control
,
65
(
6
), pp.
2371
2386
.10.1109/TAC.2019.2931941
12.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2007
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
,
Boca Raton, FL
.
13.
Sharbafi
,
M. A.
, and
Seyfarth
,
A.
, eds.,
2017
,
Bioinspired Legged Locomotion
,
Butterworth-Heinemann
,
Oxford, UK
.
14.
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2009
, “
Modeling and Control of the Monopedal Robot Thumper
,”
Proceedings of the 2009 IEEE International Conference on Robotics and Automation
, Kobe, Japan, May 12–17, pp.
3327
3334
.10.1109/ROBOT.2009.5152708
15.
Ames
,
A.
,
Galloway
,
K.
,
Grizzle
,
J.
, and
Sreenath
,
K.
,
2014
, “
Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics
,”
IEEE Trans. Autom. Control
,
59
(
4
), pp.
876
891
.10.1109/TAC.2014.2299335
16.
Hamed
,
K. A.
, and
Grizzle
,
J. W.
,
2014
, “
Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry
,”
IEEE Trans. Rob.
,
30
(
2
), pp.
365
381
.10.1109/TRO.2013.2287831
17.
Sadeghian
,
H.
,
Ott
,
C.
,
Garofalo
,
G.
, and
Cheng
,
G.
,
2017
, “
Passivity-Based Control of Underactuated Biped Robots Within Hybrid Zero Dynamics Approach
,”
Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA)
, Singapore, May 29–June 3, pp.
4096
4101
.10.1109/ICRA.2017.7989471
18.
Castillo
,
G. A.
,
Weng
,
B.
,
Zhang
,
W.
, and
Hereid
,
A.
,
2020
, “
Hybrid Zero Dynamics Inspired Feedback Control Policy Design for 3D Bipedal Locomotion Using Reinforcement Learning
,”
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA)
, Paris, France, May 31–Aug. 31, pp.
8746
8752
.10.1109/ICRA40945.2020.9197175
19.
Ames
,
A. D.
, and
Poulakakis
,
I.
,
2017
, “
Hybrid Zero Dynamics Control of Legged Robots
,”
Bioinspired Legged Locomotion: Models, Concepts, Control and Applications
,
M. A.
Sharbafi
, and
A.
Seyfarth
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
292
331
.
20.
Manchester
,
I. R.
, and
Umenberger
,
J.
,
2014
, “
Real-Time Planning With Primitives for Dynamic Walking Over Uneven Terrain
,”
Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA)
, Hong Kong, China, May 31–June 7, pp.
4639
4646
.10.1109/ICRA.2014.6907537
21.
Nguyen
,
Q.
, and
Sreenath
,
K.
,
2015
, “
Safety-Critical Control for Dynamical Bipedal Walking With Precise Footstep Placement
,”
IFAC-PapersOnLine
,
48
(
27
), pp.
147
154
.10.1016/j.ifacol.2015.11.167
22.
Nguyen
,
Q.
,
Da
,
X.
,
Grizzle
,
J. W.
, and
Sreenath
,
K.
,
2020
, “
Dynamic Walking on Stepping Stones With Gait Library and Control Barrier Functions
,”
Algorithmic Foundations of Robotics XII
,
K.
Goldberg
,
P.
Abbeel
,
K.
Bekris
, and
L.
Miller
, eds.,
Springer
,
Cham, Switzerland
, pp.
384
399
.
23.
Gregg
,
R. D.
,
Bretl
,
T.
, and
Spong
,
M.
,
2010
, “
Asymptotically Stable Gait Primitives for Planning Dynamic Bipedal Locomotion in Three Dimensions
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA)
, Anchorage, AK, May 3–7, pp.
1695
1702
.10.1109/ROBOT.2010.5509585
24.
Gregg
,
R. D.
,
Tilton
,
A. K.
,
Candido
,
S.
,
Bretl
,
T.
, and
Spong
,
M. W.
,
2012
, “
Control and Planning of 3-D Dynamic Walking With Asymptotically Stable Gait Primitives
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1415
1423
.10.1109/TRO.2012.2210484
25.
Hubicki
,
C.
,
Jones
,
M.
,
Daley
,
M.
, and
Hurst
,
J.
,
2015
, “
Do Limit Cycles Matter in the Long Run? Stable Orbits and Sliding-Mass Dynamics Emerge in Task-Optimal Locomotion
,”
Proceedings of the 2015 IEEE International Conference on Robotics and Automation (ICRA)
, Seattle, WA, May 26–30, pp.
5113
5120
.10.1109/ICRA.2015.7139911
26.
Hespanha
,
J. P.
, and
Morse
,
A. S.
,
1999
, “
Stability of Switched Systems With Average Dwell-Time
,” Proceedings of the 38th IEEE Conference on Decision and Control (CDC), Phoenix, AZ, Dec. 7–10, pp.
2655
2660
.
27.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
,
Birkhäuser
,
Boston, MA
.
28.
Alpcan
,
T.
, and
Basar
,
T.
,
2010
, “
A Stability Result for Switched Systems With Multiple Equilibria
,”
Dyn. Contin., Discrete Impulsive Syst. Ser. A: Math. Anal.
,
17
, pp.
949
958
.
29.
Gong
,
Y.
,
Hartley
,
R.
,
Da
,
X.
,
Hereid
,
A.
,
Harib
,
O.
,
Huang
,
J.-K.
, and
Grizzle
,
J.
,
2019
, “
Feedback Control of a Cassie Bipedal Robot: Walking, Standing, and Riding a Segway
,” Proceedings of the 2019 American Control Conference (ACC), Philadelphia, PA, July 10–12, pp.
4559
4566
.
30.
Nguyen
,
Q.
,
Agrawal
,
A.
,
Martin
,
W.
,
Geyer
,
H.
, and
Sreenath
,
K.
,
2018
, “
Dynamic Bipedal Locomotion Over Stochastic Discrete Terrain
,”
Int. J. Rob. Res.
,
37
(
13–14
), pp.
1537
1553
.10.1177/0278364918791718
31.
Li
,
Z.
,
Zeng
,
J.
,
Chen
,
S.
, and
Sreenath
,
K.
,
2023
, “
Autonomous Navigation of Underactuated Bipedal Robots In Height-Constrained Environments
,”
Int. J. Rob. Res.
, 42(8), pp. 565–585.10.1177/02783649231187670
32.
Saglam
,
C. O.
, and
Byl
,
K.
,
2014
, “
Robust Policies Via Meshing for Metastable Rough Terrain Walking
,” Proceedings of Robotics: Science and Systems, Berkeley, CA, July 12–16.
33.
Park
,
H.-W.
,
Ramezani
,
A.
, and
Grizzle
,
J. W.
,
2013
, “
A Finite-State Machine for Accommodating Unexpected Large Ground-Height Variations in Bipedal Robot Walking
,”
IEEE Trans. Rob.
,
29
(
2
), pp.
331
345
.10.1109/TRO.2012.2230992
34.
Apostolopoulos
,
S.
,
Leibold
,
M.
, and
Buss
,
M.
,
2016
, “
Online Motion Planning Over Uneven Terrain With Walking Primitives and Regression
,”
Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA)
, Stockholm, Sweden, May 16–21, pp.
3799
3805
.10.1109/ICRA.2016.7487568
35.
Veer
,
S.
,
Motahar
,
M. S.
, and
Poulakakis
,
I.
,
2017
, “
Adaptation of Limit-Cycle Walkers for Collaborative Tasks: A Supervisory Switching Control Approach
,”
Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Vancouver, BC, Canada, Sept. 24–28, pp.
5840
5845
.10.1109/IROS.2017.8206474
36.
Veer
,
S.
, and
Poulakakis
,
I.
,
2019
, “
Safe Adaptive Switching Among Dynamical Movement Primitives: Application to 3D Limit-Cycle Walkers
,”
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA)
, Montreal, QC, Canada, May 20–24, pp.
3719
3725
.10.1109/ICRA.2019.8793519
37.
Chand
,
P.
,
Veer
,
S.
, and
Poulakakis
,
I.
,
2022
, “
Interactive Dynamic Walking: Learning Gait Switching Policies With Generalization Guarantees
,”
IEEE Rob. Autom. Lett.
,
7
(
2
), pp.
4149
4156
.10.1109/LRA.2022.3147006
38.
Chand
,
P.
,
Veer
,
S.
, and
Poulakakis
,
I.
,
2020
, “
An Adaptive Supervisory Control Approach to Dynamic Locomotion Under Parametric Uncertainty
,”
Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA)
, Paris, France, May 31–Aug. 31, pp.
2443
2449
.10.1109/ICRA40945.2020.9197120
39.
Bhounsule
,
P. A.
,
Zamani
,
A.
, and
Pusey
,
J.
,
2018
, “
Switching Between Limit Cycles in a Model of Running Using Exponentially Stabilizing Discrete Control Lyapunov Function
,”
Proceedings of the 2018 Annual American Control Conference (ACC)
, Milwaukee, WI, June 27–29, pp.
3714
3719
.10.23919/ACC.2018.8431123
40.
Zamani
,
A.
,
Galloway
,
J. D.
, and
Bhounsule
,
P. A.
,
2019
, “
Feedback Motion Planning of Legged Robots by Composing Orbital Lyapunov Functions Using Rapidly-Exploring Random Trees
,”
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA)
, Montreal, QC, Canada, May 20–24, pp.
1410
1416
.10.1109/ICRA.2019.8793578
41.
Cao
,
Q.
,
van Rijn
,
A. T.
, and
Poulakakis
,
I.
,
2015
, “
On the Control of Gait Transitions in Quadrupedal Running
,”
Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Hamburg, Germany, Sept. 28–Oct. 02, pp.
5136
5141
.10.1109/IROS.2015.7354100
42.
Cao
,
Q.
, and
Poulakakis
,
I.
,
2016
, “
Quadrupedal Running With a Flexible Torso: Control and Speed Transitions With Sums-of-Squares Verification
,”
Artif. Life Rob.
,
21
(
4
), pp.
384
392
.10.1007/s10015-016-0330-5
43.
Ubellacker
,
W.
,
Csomay-Shanklin
,
N.
,
Molnar
,
T. G.
, and
Ames
,
A. D.
,
2021
, “
Verifying Safe Transitions Between Dynamic Motion Primitives on Legged Robots
,” Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sept. 27–Oct. 1, pp.
8477
8484
.
44.
Veer
,
S.
, and
Poulakakis
,
I.
,
2019
, “
Practical Stability of Switched Systems With Multiple Equilibria Under Disturbances
,”
Proceedings of the 2019 American Control Conference (ACC)
, Philadelphia, PA, July 10–12, pp.
4935
4940
.10.23919/ACC.2019.8815152
45.
Dorothy
,
M.
, and
Chung
,
S.-J.
,
2016
, “
Switched Systems With Multiple Invariant Sets
,”
Syst. Control Lett.
,
96
, pp.
103
109
.10.1016/j.sysconle.2016.07.008
46.
Haddad
,
W. M.
, and
Chellaboina
,
V.
,
2008
,
Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach
,
Princeton University Press
,
Princeton, NJ
.
47.
Burridge
,
R. R.
,
Rizzi
,
A. A.
, and
Koditschek
,
D. E.
,
1999
, “
Sequential Composition of Dynamically Dexterous Robot Behaviors
,”
Int. J. Rob. Res.
,
18
(
6
), pp.
534
555
.10.1177/02783649922066385
48.
Parrilo
,
P. A.
,
2000
, “
Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization
,” Ph.D. thesis,
California Institute of Technology, Pasadena, CA
.
49.
LaValle
,
S. M.
, and
Kuffner
,
J. J.
,
2001
, “
Randomized Kinodynamic Planning
,”
Int. J. Rob. Res.
,
20
(
5
), pp.
378
400
.10.1177/02783640122067453
50.
Tedrake
,
R.
,
Manchester
,
I. R.
,
Tobenkin
,
M.
, and
Roberts
,
J. W.
,
2010
, “
LQR-Trees: Feedback Motion Planning Via Sums-of-Squares Verification
,”
Int. J. Rob. Res.
,
29
(
8
), pp.
1038
1052
.10.1177/0278364910369189
51.
Majumdar
,
A.
, and
Tedrake
,
R.
,
2017
, “
Funnel Libraries for Real-Time Robust Feedback Motion Planning
,”
Int. J. Rob. Res.
,
36
(
8
), pp.
947
982
.10.1177/0278364917712421
52.
Danielson
,
C.
,
Weiss
,
A.
,
Berntorp
,
K.
, and
Di Cairano
,
S.
,
2016
, “
Path Planning Using Positive Invariant Sets
,”
Proceedings of the 2016 IEEE 55th Conference on Decision and Control (CDC)
, Las Vegas, NV, Dec. 12–14, pp.
5986
5991
.10.1109/CDC.2016.7799188
53.
Weiss
,
A.
,
Danielson
,
C.
,
Berntorp
,
K.
,
Kolmanovsky
,
I.
, and
Di Cairano
,
S.
,
2017
, “
Motion Planning With Invariant Set Trees
,”
Proceedings of the 2017 IEEE Conference on Control Technology and Applications (CCTA)
, Maui, HI, Aug. 27–30, pp.
1625
1630
.10.1109/CCTA.2017.8062689
54.
Barbosa
,
F. S.
,
Lindemann
,
L.
,
Dimarogonas
,
D. V.
, and
Tumova
,
J.
,
2020
, “
Provably Safe Control of Lagrangian Systems in Obstacle-Scattered Environments
,”
Proceedings of the 2020 59th IEEE Conference on Decision and Control (CDC)
, Jeju, South Korea, Dec. 14–18, pp.
2056
2061
.10.1109/CDC42340.2020.9304160
55.
Li
,
S.
,
Park
,
D.
,
Sung
,
Y.
,
Shah
,
J. A.
, and
Roy
,
N.
,
2021
, “
Reactive Task and Motion Planning Under Temporal Logic Specifications
,”
Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA)
, Xi'an, China, May 30–June 5, pp.
12618
12624
.10.1109/ICRA48506.2021.9561807
56.
Vasilopoulos
,
V.
,
Castro
,
S.
,
Vega-Brown
,
W.
,
Koditschck
,
D. E.
, and
Roy
,
N.
,
2022
, “
A Hierarchical Deliberative-Reactive System Architecture for Task and Motion Planning in Partially Known Environments
,”
Proceedings of the 2022 International Conference on Robotics and Automation (ICRA)
, Philadelphia, PA, May 23–27, pp.
7342
7348
.10.1109/ICRA46639.2022.9811936
57.
Shamsah
,
A.
,
Gu
,
Z.
,
Warnke
,
J.
,
Hutchinson
,
S.
, and
Zhao
,
Y.
,
2023
, “
Integrated Task and Motion Planning for Safe Legged Navigation in Partially Observable Environments
,”
IEEE Trans. Rob.
,
39
(
6
), pp.
4913
4934
.10.1109/TRO.2023.3299524
58.
Wieber
,
P.-B.
,
Tedrake
,
R.
, and
Kuindersma
,
S.
,
2016
, “
Modeling and Control of Legged Robots
,”
Springer Handbook of Robotics
,
B.
Sicialiano
, and
O.
Khatib
, eds.,
Springer
,
Cham, Switzerland
, pp.
1203
1234
.
59.
Wensing
,
P. M.
, and
Revzen
,
S.
,
2017
, “
Template Models for Control
,”
Bioinspired Legged Locomotion: Models, Concepts, Control and Applications
,
M. A.
Sharbafi
, and
A.
Seyfarth
, eds.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
240
263
.
60.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2001
, “
The 3D Linear Inverted Pendulum Mode: A Simple Modeling for a Biped Walking Pattern Generation
,”
Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems
, Maui, HI, Oct. 29–Nov. 03, pp.
239
246
.10.1109/IROS.2001.973365
61.
Gong
,
Y.
, and
Grizzle
,
J. W.
,
2022
, “
Zero Dynamics, Pendulum Models, and Angular Momentum in Feedback Control of Bipedal Locomotion
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
12
), p.
121006
.10.1115/1.4055770
62.
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2009
, “
The Spring Loaded Inverted Pendulum as the Hybrid Zero Dynamics of an Asymmetric Hopper
,”
IEEE Trans. Autom. Control
,
54
(
8
), pp.
1779
1793
.10.1109/TAC.2009.2024565
63.
Poulakakis
,
I.
,
2010
, “
Spring Loaded Inverted Pendulum Embedding: Extensions Toward the Control of Compliant Running Robots
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage
, AK, May 3–7, pp.
5219
5224
.
64.
Kurtz
,
V.
,
Wensing
,
P. M.
, and
Lin
,
H.
,
2021
, “
Approximate Simulation for Template-Based Whole-Body Control
,”
IEEE Rob. Autom. Lett.
,
6
(
2
), pp.
558
565
.10.1109/LRA.2020.3047794
65.
Veer
,
S.
, and
Poulakakis
,
I.
,
2019
, “
Input-to-State Stability of Periodic Orbits of Systems With Impulse Effects Via Poincaré Analysis
,”
IEEE Trans. Autom. Control
,
64
(
11
), pp.
4583
4598
.10.1109/TAC.2019.2909684
66.
Veer
,
S.
, and
Poulakakis
,
I.
,
2019
, “
Robustness of Periodic Orbits of Impulsive Systems à la Poincaré
,”
Proceedings of the 2019 IEEE 58th Conference on Decision and Control (CDC)
, Nice, France, Dec. 11–13, pp.
3966
3971
.10.1109/CDC40024.2019.9029385
67.
Isidori
,
A.
,
1995
,
Nonlinear Control Systems
, 3rd ed.,
Springer
,
New York
.
68.
Spong
,
M. W.
, and
Bullo
,
F.
,
2005
, “
Controlled Symmetries and Passive Walking
,”
IEEE Trans. Autom. Control
,
50
(
7
), pp.
1025
1031
.10.1109/TAC.2005.851449
69.
Shih
,
C.-L.
,
Grizzle
,
J.
, and
Chevallereau
,
C.
,
2012
, “
From Stable Walking to Steering of a 3D Bipedal Robot With Passive Point Feet
,”
Robotica
,
30
(
7
), pp.
1119
1130
.10.1017/S026357471100138X
70.
Zhai
,
G.
, and
Michel
,
A. N.
,
2003
, “
Generalized Practical Stability Analysis of Discontinuous Dynamical Systems
,”
Proceedings of the 42nd IEEE International Conference on Decision and Control
, Maui, HI, Dec. 9–12, pp.
1663
1668
.10.1109/CDC.2003.1272851
71.
Chevallereau
,
C.
,
Grizzle
,
J. W.
, and
Shih
,
C.-L.
,
2009
, “
Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
37
50
.10.1109/TRO.2008.2010366
72.
Narkhede
,
K. S.
,
Kulkarni
,
A. M.
,
Thanki
,
D. A.
, and
Poulakakis
,
I.
,
2022
, “
A Sequential MPC Approach to Reactive Planning for Bipedal Robots Using Safe Corridors in Highly Cluttered Environments
,”
IEEE Rob. Autom. Lett.
,
7
(
4
), pp.
11831
11838
.10.1109/LRA.2022.3204367
73.
Veer
,
S.
,
2018
, “
Composing Motion Primitives Under Disturbances: A Switched Systems Approach
,” Ph.D. thesis,
University of Delaware, Newark, DE
.
You do not currently have access to this content.