Abstract

Adding battery locomotives to traditional diesel locomotives to form a hybrid consist has the potential to reduce fuel consumption and emissions in freight rail operations. This paper provides route-based estimates of diesel (hpd/ton) and battery (hpb/ton) power requirements and diesel (gal/ton) and battery (hpbhr/ton) energy requirements for hybrid consists. Given a route-specific power profile, the power split between the battery pack and the diesel engine is optimized to minimize fuel consumption by running the diesel engine at maximum efficiency during the entire route. Simulations for 200-mile round trips between Chicago and Harrisburg show that the diesel power is maximum in low-gradient regions at 1.05 (hpd/ton) and battery power is maximum in hilly regions at 2 (hpb/ton) for discharge and 6.5 (hpb/ton) for charge. Maximum fuel efficiency gains of approximately 60% are seen in the mountains, where 2.09 (hpbhr/ton) of battery energy is needed. Minimum fuel economy gains are observed in flat regions, with 20% fuel consumption reduction. With battery current and voltage limits, the battery pack size increases, and fuel savings decrease.

References

1.
Environmental Protection Agency, 2023, “Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021,” EPA 430-R-23-002, accessed Nov. 21, 2023, https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021
2.
Environmental Protection Agency, 2023, “Freight Matters to Supply Chain Sustainability,” accessed Nov. 21, 2023, https://www.epa.gov/smartway/learn-about-smartway
3.
Association of American Railroads, 2021, “AAR Climate Change Report,” accessed Nov. 21, 2023, https://www.aar.org/wp-content/uploads/2021/02/AAR-Climate-Change-Report.pdf
4.
Iden
,
M. E.
,
2019
, “
US Freight Rail Fuel Efficiency: 1920-2015 Review and Discussion of Future Trends
,”
ASME
Paper No. JRC2019-1296.10.1115/JRC2019-1296
5.
Dahodwala
,
M.
,
Joshi
,
S.
,
Dhanraj
,
F. N. U.
,
Ahuja
,
N.
,
Koehler
,
E.
,
Franke
,
M.
, and
Tomazic
,
D.
,
2021
, “
Evaluation of 48V and High Voltage Parallel Hybrid Diesel Powertrain Architectures for Class 6-7 Medium Heavy-Duty Vehicles
,”
SAE
Paper No. 2021-01-0720.10.4271/2021-01-0720
6.
Joshi
,
S.
,
Dahodwala
,
M.
,
Ahuja
,
N.
,
Dhanraj
,
F. N. U.
,
Koehler
,
E.
,
Franke
,
M.
, and
Tomazic
,
D.
,
2021
, “
Evaluation of Hybrid, Electric and Fuel Cell Powertrain Solutions for Class 6-7 Medium Heavy-Duty Vehicles
,”
SAE Int. J. Adv. Curr. Pract. Mobil.
,
3
(
6
), pp.
2955
2971
.10.4271/2021-01-0723
7.
Liu
,
L.
,
Hwang
,
T.
,
Lee
,
S.
,
Ouyang
,
Y.
,
Lee
,
B.
,
Smith
,
S. J.
,
Yan
,
F.
,
Daenzer
,
K.
, and
Bond
,
T. C.
,
2015
, “
Emission Projections for Long-Haul Freight Trucks and Rail in the United States Through 2050
,”
Environ. Sci. Technol.
,
49
(
19
), pp.
11569
11576
.10.1021/acs.est.5b01187
8.
California Air Resources Board, 2017, “Petition for Rulemaking: Seeking the Amendment of the Locomotive Emission Standards,” accessed Nov. 21, 2023, https://ww2.arb.ca.gov/sites/default/files/2020-07/final_locomotive_petition_and_cover_letter_4_3_17.pdf
9.
Bhaskar
,
K.
,
Kumar
,
A.
,
Bunce
,
J.
,
Pressman
,
J.
,
Burkell
,
N.
,
Miller
,
N.
, and
Rahn
,
C. D.
,
2023
, “
State of Charge and State of Health Estimation in Large Lithium-Ion Battery Packs
,” American Control Conference (
ACC
), San Diego, CA, May 31–June 2, pp.
3075
3080
.10.23919/ACC55779.2023.10156326
10.
Oldknow
,
K.
,
Mulligan
,
K.
, and
McTaggart-Cowan
,
G.
,
2021
, “
The Trajectory of Hybrid and Hydrogen Technologies in North American Heavy Haul Operations
,”
Railway Eng. Sci.
,
29
(
3
), pp.
233
247
.10.1007/s40534-021-00242-1
11.
Popovich
,
N. D.
,
Rajagopal
,
D.
,
Tasar
,
E.
, and
Phadke
,
A.
,
2021
, “
Economic, Environmental and Grid-Resilience Benefits of Converting Diesel Trains to Battery-Electric
,”
Nat. Energy
,
6
(
11
), pp.
1017
1025
.10.1038/s41560-021-00915-5
12.
Beatrice
,
C.
,
Rispoli
,
N.
,
Di Blasio
,
G.
,
Konstandopoulos
,
A. G.
,
Papaioannou
,
E.
, and
Imren
,
A.
,
2016
, “
Impact of Emerging Engine and After-Treatment Technologies for Improved Fuel Efficiency and Emission Reduction for the Future Rail Diesel Engines
,”
Emission Control Sci. Technol.
,
2
(
2
), pp.
99
112
.10.1007/s40825-016-0035-1
13.
Fritz
,
S. G.
,
2000
, “
The Potential for LNG as a Railroad Fuel in the US
,”
ASME J. Eng. Gas Turbines Power
,
122
(
1
), pp.
130
134
.10.1115/1.483184
14.
Eggleton
,
P.
,
Oliver
,
B.
, and
Riemer
,
S.
,
2020
,
Hydrail Deployment in Canada–Defining the Prerequisites
,
Telligence Group
,
Saint-Lambert, Canada
.
15.
Zhang
,
G.
,
Chen
,
W.
, and
Li
,
Q.
,
2017
, “
Modeling, Optimization and Control of a FC/Battery Hybrid Locomotive Based on ADVISOR
,”
Int. J. Hydrogen Energy
,
42
(
29
), pp.
18568
18583
.10.1016/j.ijhydene.2017.04.172
16.
Boozarjomehri
,
E.
,
Morrison
,
E.
,
Roth
,
I.
, and
Lovegrove
,
G.
,
2012
, “
Moving Away From Diesel and Towards All-Electric Locomotives in North America: Planning and Logistics of Ultra-Capacitor/Battery Technology
,”
ASME
Paper No. JRC2012-74123.10.1115/JRC2012-74123
17.
Jaafar
,
A.
,
Sareni
,
B.
,
Roboam
,
X.
, and
Thiounn-Guermeur
,
M.
,
2010
, “
Sizing of a Hybrid Locomotive Based on Accumulators and Ultracapacitors
,”
IEEE Vehicle Power and Propulsion Conference
, Lille, France, Sept. 1–3, pp.
1
6
.10.1109/VPPC.2010.5729131
18.
Barbosa
,
F. C.
,
2022
, “
Battery Electric Rail Technology Review-a Technical and Operational Assessment. Current Status, Challenges and Perspectives
,”
ASME
Paper No. JRC2022-78133.10.1115/V001T05A002
19.
Iden
,
M. E.
,
2021
, “
Battery Electric Locomotives & Battery Tenders: Operational & Infrastructure Challenges to Widespread Adoption
,”
ASME
Paper No. V001T07A003.10.1115/JRC2022-78133
20.
Bhaskar
,
K.
,
Kumar
,
A.
,
Bunce
,
J.
,
Pressman
,
J.
,
Burkell
,
N.
, and
Rahn
,
C. D.
,
2023
, “
Data-Driven Thermal Anomaly Detection in Large Battery Packs
,”
Batteries
,
9
(
2
), p.
70
.10.3390/batteries9020070
21.
Humphrey
,
D.
,
2020
, “
Steady State
,”
Railway Age
,
221
(
5
), p.
43
.
22.
Barbosa
,
F. C.
,
2021
, “
Hybrid Rail Technology Review: An Intermediate Pathway for Electrifying the Freight and Commuter Rail Sector-a Technical and Operational Assessment
,”
ASME
Paper No. JRC2021-58271.10.1115/JRC2021-58271
23.
Cipek
,
M.
,
Pavković
,
D.
,
Krznar
,
M.
,
Kljaić
,
Z.
, and
Mlinarić
,
T. J.
,
2021
, “
Comparative Analysis of Conventional Diesel-Electric and Hypothetical Battery-Electric Heavy Haul Locomotive Operation in Terms of Fuel Savings and Emissions Reduction Potentials
,”
Energy
,
232
, p.
121097
.10.1016/j.energy.2021.121097
24.
Kapetanović
,
M.
,
Núñez
,
A.
,
van Oort
,
N.
, and
Goverde
,
R. M.
,
2021
, “
Reducing Fuel Consumption and Related Emissions Through Optimal Sizing of Energy Storage Systems for Diesel-Electric Trains
,”
Appl. Energy
,
294
, p.
117018
.10.1016/j.apenergy.2021.117018
25.
Hu
,
X.
,
Moura
,
S. J.
,
Murgovski
,
N.
,
Egardt
,
B.
, and
Cao
,
D.
,
2016
, “
Integrated Optimization of Battery Sizing, Charging, and Power Management in Plug-in Hybrid Electric Vehicles
,”
IEEE Trans. Control Syst. Technol.
,
24
(
3
), pp.
1036
1043
.10.1109/TCST.2015.2476799
26.
Sundström
,
O.
,
Ambühl
,
D.
, and
Guzzella
,
L.
,
2010
, “
On Implementation of Dynamic Programming for Optimal Control Problems With Final State Constraints
,”
Oil Gas Sci. Technol.–Revue de L'Institut Français du Pétrole
,
65
(
1
), pp.
91
102
.10.2516/ogst/2009020
27.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2011
, “
A Comparative Analysis of Energy Management Strategies for Hybrid Electric Vehicles,
ASME J. Dyn. Sys., Meas., Control
, 133(3), p.
031012
.10.1115/1.4003267
28.
Spiryagin
,
M.
,
Wolfs
,
P.
,
Cole
,
C.
,
Spiryagin
,
V.
,
Sun
,
Y. Q.
, and
McSweeney
,
T.
,
2016
,
Design and Simulation of Heavy Haul Locomotives and Trains
,
CRC Press
, Boca Raton, FL.
29.
Sarma
,
U.
, and
Ganguly
,
S.
,
2020
, “
Design Optimisation for Component Sizing Using Multi‐Objective Particle Swarm Optimisation and Control of PEM Fuel Cell‐Battery Hybrid Energy System for Locomotive Application
,”
IET Electr. Syst. Transp.
,
10
(
1
), pp.
52
61
.10.1049/iet-est.2018.5053
30.
Fritz
,
S.
,
2000
,
Diesel Fuel Effects on Locomotive Exhaust Emissions, Final Report
,
Southwest Research Institute for the California Air Resources Board
,
Sacramento, CA
.
31.
He
,
H.
,
Xiong
,
R.
,
Guo
,
H.
, and
Li
,
S.
,
2012
, “
Comparison Study on the Battery Models Used for the Energy Management of Batteries in Electric Vehicles
,”
Energy Convers. Manage.
,
64
, pp.
113
121
.10.1016/j.enconman.2012.04.014
32.
Baczyńska
,
A.
,
Niewiadomski
,
W.
,
Gonçalves
,
A.
,
Almeida
,
P.
, and
Luís
,
R.
,
2018
, “
LI-NMC Batteries Model Evaluation With Experimental Data for Electric Vehicle Application
,”
Batteries
,
4
(
1
), p.
11
.10.3390/batteries4010011
33.
ARL/Penn State, PSU College of Engineering, 2023, “SCORE: Synthesis of Consists as Rolling Energy Micro-grids (v1.0),” accessed Nov. 21, 2023, https://www.scorelocomotives.org
You do not currently have access to this content.