Abstract

Hydraulically amplified dielectric elastomer actuators (HADEAs) comprise a hyper-elastic inflatable membrane filled with an incompressible dielectric fluid and partially covered with a pair of electrodes. Applying voltage to the electrodes induces Maxwell pressure, attracting them and forcing the peripheral membrane to inflate. We present a dynamic lumped parameter model (LPM) of a HADEA and discuss the dynamic response and the actuator's stability. The total kinetic energy was determined with a Lagrange description for the fluid flow. Lubrication theory was used to estimate the viscous fluid friction losses between the electrodes. Stability analysis of the dynamic LPM shows a Lyapunov stable node moving with the applied voltage, and a saddle point representing the snap-through instability in the actuator. A dynamic finite element model (FEM) was developed for comparison. The dynamic responses of the LPM showed a good agreement with the FEM while overestimating the viscous losses in the presence of a slight angle between the electrodes.

References

1.
Carpi
,
F.
,
Rossi
,
D. D.
,
Kornbluh
,
R.
,
Pelrine
,
R. E.
, and
Sommer-Larsen
,
P.
,
2011
,
Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology
,
Elsevier
,
Amsterdam, The Netherlands
.
2.
Landau
,
L.
, and
Lifshitz
,
E.
,
1984
,
Electrodynamics of Continuous Media
, Vol.
8
,
Pergamon Press
,
Oxford, UK
.
3.
Chen
,
L.
,
Chen
,
W.
,
Xue
,
Y.
,
Zhang
,
M.
,
Chen
,
X.
,
Cao
,
X.
,
Zhang
,
Z.
,
Li
,
G.
, and
Li
,
T.
,
2019
, “
Investigation of the State Transition and Moving Boundary in a Pneumatic–Hydraulic Coupled Dielectric Elastomer Actuator
,”
ASME J. Appl. Mech.
,
86
(
3
), p.
031004
.10.1115/1.4042136
4.
Rus
,
D.
, and
Tolley
,
M. T.
,
2015
, “
Design, Fabrication and Control of Soft Robots
,”
Nature
,
521
(
7553
), pp.
467
475
.10.1038/nature14543
5.
Acome
,
E.
,
Mitchell
,
S.
,
Morrissey
,
T.
,
Emmett
,
M.
,
Benjamin
,
C.
,
King
,
M.
,
Radakovitz
,
M.
, and
Keplinger
,
C.
,
2018
, “
Hydraulically Amplified Self-Healing Electrostatic Actuators With Muscle-Like Performance
,”
Science
,
359
(
6371
), pp.
61
65
.10.1126/science.aao6139
6.
Zamanian
,
A. H.
, and
Richer
,
E.
,
2020
, “
Inverse Kinematic Analysis of Muscular Hydrostat Inspired Soft Robot With Chain-Like Optimization With an Embedded Controller
,”
ASME
Paper No. DSCC2020-3247. 10.1115/DSCC2020-3247
7.
Zhao
,
X.
, and
Suo
,
Z.
,
2007
, “
Method to Analyze Electromechanical Stability of Dielectric Elastomers
,”
Appl. Phys. Lett.
,
91
(
6
), p.
061921
.10.1063/1.2768641
8.
Zhu
,
J.
,
Stoyanov
,
H.
,
Kofod
,
G.
, and
Suo
,
Z.
,
2010
, “
Large Deformation and Electromechanical Instability of a Dielectric Elastomer Tube Actuator
,”
J. Appl. Phys.
,
108
(
7
), p.
074113
.10.1063/1.3490186
9.
Zamanian
,
A. H.
,
Son
,
D. Y.
,
Krueger
,
P. S.
, and
Richer
,
E.
,
2022
, “
Nonlinear Lumped Parameter Model and Snap-Through Stability Analysis of Hydraulically Amplified Dielectric Elastomer Actuators
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
6
), p.
061007
.10.1115/1.4053944
10.
Keplinger
,
C.
,
Li
,
T.
,
Baumgartner
,
R.
,
Suo
,
Z.
, and
Bauer
,
S.
,
2012
, “
Harnessing Snap-Through Instability in Soft Dielectrics to Achieve Giant Voltage-Triggered Deformation
,”
Soft Matter
,
8
(
2
), pp.
285
288
.10.1039/C1SM06736B
11.
Overvelde
,
J. T.
,
Kloek
,
T.
,
D'haen
,
J. J.
, and
Bertoldi
,
K.
,
2015
, “
Amplifying the Response of Soft Actuators by Harnessing Snap-Through Instabilities
,”
Proc. Natl. Acad. Sci.
,
112
(
35
), pp.
10863
10868
.10.1073/pnas.1504947112
12.
Kellaris
,
N.
,
Venkata
,
V. G.
,
Smith
,
G. M.
,
Mitchell
,
S. K.
, and
Keplinger
,
C.
,
2018
, “
Peano-HASEL Actuators: Muscle-Mimetic, Electrohydraulic Transducers That Linearly Contract on Activation
,”
Sci. Rob.
,
3
(
14
), p.
eaar3276
.10.1126/scirobotics.aar3276
13.
Kellaris
,
N.
,
Venkata
,
V. G.
,
Rothemund
,
P.
, and
Keplinger
,
C.
,
2019
, “
An Analytical Model for the Design of Peano-Hasel Actuators With Drastically Improved Performance
,”
Extreme Mech. Lett.
,
29
, p.
100449
.10.1016/j.eml.2019.100449
14.
Tamadapu
,
G.
, and
DasGupta
,
A.
,
2013
, “
Finite Inflation Analysis of a Hyperelastic Toroidal Membrane of Initially Circular Cross-Section
,”
Int. J. Non-Linear Mech.
,
49
, pp.
31
39
.10.1016/j.ijnonlinmec.2012.09.008
15.
Chen
,
F.
, and
Wang
,
M. Y.
,
2015
, “
Dynamic Performance of a Dielectric Elastomer Balloon Actuator
,”
Meccanica
,
50
(
11
), pp.
2731
2739
.10.1007/s11012-015-0206-0
16.
Wang
,
F.
,
Yuan
,
C.
,
Lu
,
T.
, and
Wang
,
T.
,
2017
, “
Anomalous Bulging Behaviors of a Dielectric Elastomer Balloon Under Internal Pressure and Electric Actuation
,”
J. Mech. Phys. Solids
,
102
, pp.
1
16
.10.1016/j.jmps.2017.01.021
17.
Zamanian
,
A. H.
,
Porter
,
D. A.
,
Krueger
,
P.
, and
Richer
,
E.
,
2018
, “
Multi-Physics Design and Modeling of 3D Printed Hydraulically Amplified Dielectric Elastomer Actuators With Large Actuation Strokes
,” ASME Paper No. DSCC2018-9227. 10.1115/DSCC2018-9227
18.
Zamanian
,
A. H.
,
Son
,
D. S.
,
Krueger
,
P. S.
, and
Richer
,
E.
,
2019
, “
Lumped Parameter Modeling and Snap-Through Stability Analysis of Planar Hydraulically Amplified Dielectric Elastomer Actuators
,”
ASME Letters Dyn. Sys. Control.
,
1
(
1
), p.
011004
.10.1115/1.4046398
19.
Ginsberg
,
J.
,
2008
,
Engineering Dynamics
, Vol.
10
,
Cambridge University Press
,
Cambridge, UK
.
20.
Langlois
,
W. E.
, and
Deville
,
M. O.
,
2014
, “
Lubrication Theory
,”
Slow Viscous Flow
,
W. E.
Langlois
, and
M. O.
Deville
, eds.,
Springer International Publishing
,
Cham
, pp.
229
249
.
21.
Young
,
D. F.
,
Munson
,
B. R.
,
Okiishi
,
T. H.
, and
Huebsch
,
W. W.
,
2010
,
A Brief Introduction to Fluid Mechanics
,
Wiley
,
Hoboken, NJ
.
22.
Murray
,
R. M.
,
Li
,
Z.
,
Sastry
,
S. S.
, and
Sastry
,
S. S.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.