Abstract

Lumped parameter modeling is a consolidated technique for analyzing the fluid dynamic behavior of positive displacement machines, owing to their computational swiftness and the ease of integrating other physical domains affecting the operation of the machine. With some very limited exceptions, this modeling technique typically neglects fluid inertia and momentum effects. This paper proposes an approach to study the effects of fluid inertia affecting the pressurization and depressurization of the tooth space volumes of an external gear pump. The approach is based on considering the fluid inertia in the pressurization grooves and inside the control volumes with a peculiar subdivision. Further, frequency-dependent friction is also modeled to provide realistic damping of the fluid inside these channels. Validation of the model has been performed by comparing the lumped parameter model with a full three-dimensional Navier–Stokes solver. The quantities compared, such as tooth space volume pressures and outlet volumetric flow rate, show a good match between the two approaches for varying operating speeds. A comparison with the experiments supports the modeling approach as well. The paper finally, also discusses which operating conditions and geometries play a significant role that governs the necessity to model such fluid inertia effects in the first place.

References

1.
Mucchi
,
E.
,
D’Elia
,
G.
, and
Dalpiaz
,
G.
,
2012
, “
Simulation of the Running in Process in External Gear Pumps and Experimental Verification
,”
Meccanica
,
47
(
3
), pp.
621
637
.10.1007/s11012-011-9470-9
2.
Borghi
,
M.
,
Milani
,
M.
, and
Paltrinieri
,
F.
,
2001
, “
Influenza del rodaggio sulle condizioni di funzionamento di macchine volumetriche ad ingranaggi esterni
,” M,
Guidetti.
, pp.
69
80
.https://hdl.handle.net/11380/621307
3.
Vacca
,
A.
, and
Guidetti
,
M.
,
2011
, “
Modelling and Experimental Validation of External Spur Gear Machines for Fluid Power Applications
,”
Simul. Model. Pract. Theory
,
19
(
9
), pp.
2007
2031
.10.1016/j.simpat.2011.05.009
4.
Ransegnola
,
T.
,
Zappaterra
,
F.
, and
Vacca
,
A.
,
2022
, “
A Strongly Coupled Simulation Model for External Gear Machines Considering Fluid-Structure Induced Cavitation and Mixed Lubrication
,”
Appl. Math. Model.
,
104
, pp.
721
749
.10.1016/j.apm.2021.11.035
5.
Johnston
,
D. N.
,
2006
, “
Prediction of Fluid Inertance in Nonuniform Passageways
,”
ASME J. Fluids Eng.
,
128
(
2
), pp.
266
275
.10.1115/1.2171713
6.
Edge
,
K. A.
, and
Darling
,
J.
,
1986
, “
Cylinder Pressure Transients in Oil Hydraulic Pumps With Sliding Plate Valves
,”
Proc. Inst. Mech. Eng., Part B
,
200
(
1
), pp.
45
54
.10.1243/PIME_PROC_1986_200_047_02
7.
Mandal
,
N. P.
,
Saha
,
R.
, and
Sanyal
,
D.
,
2012
, “
Effects of Flow Inertia Modelling and Valve-Plate Geometry on Swash-Plate Axial-Piston Pump Performance
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
226
(
4
), pp.
451
465
.10.1177/0959651811426508
8.
Ericson
,
L.
, and
Palmberg
,
J.-O.
,
2008
, “
Unsteady Flow Through Valve Plate Restrictor in a Hydraulic Pump/Motor Unit
,”
2nd Annual Dynamic Systems and Control Conference
, Oct. 12–14,
Hollywood, CA
, Linköping University, Fluid and Mechatronic Systems, pp.
135
147
.
9.
Wylie
,
E. B.
, and
Streeter
,
V. L.
,
1978
,
Fluid Transients
,
McGraw-Hill
,
New York
.
10.
Vítkovskà
,
J. P.
,
Lambert
,
M. F.
,
Simpson
,
A. R.
, and
Bergant
,
A.
,
2000
, “
Advances in Unsteady Friction Modelling in Transient Pipe Flow
,”
Proceedinmgs of the Eighth International Conference on Pressure Surges
, Apr. 12–14, BHR Group Bedford, UK, pp.
471
482
.
11.
MathWorks
,
2023
, “
Segmented Pipeline
,” R2023a, accessed Mar. 29, 2023, https://www.mathworks.com/help/hydro/ref/segmentedpipeline.html
12.
Siemens Digital Industries Software
,
2023
, “
Simcenter Amesim Reference Guide
,” accessed Mar. 29, 2023, https://docs.plm.automation.siemens.com/content/amesim/17/help/en_US/simcenter_amesim_reference_guide/what_is_simcenter_amesim.html
13.
Taylor
,
S. E. M.
,
Johnston
,
D. N.
, and
Longmore
,
D. K.
,
1997
, “
Modelling of Transient Flow in Hydraulic Pipelines
,”
Proc. Inst. Mech. Eng. Part I: J. Systems Control Eng.
,
211
(
6
), pp.
447
455
.10.1243/0959651981540035
14.
Watton
,
J.
, and
Tadmori
,
M.
,
1988
, “
A Comparison of Techniques for the Analysis of Transmission Line Dynamics in Electrohydraulic Control Systems
,”
Appl. Math. Model.
,
12
(
5
), pp.
457
466
.10.1016/0307-904X(88)90082-0
15.
Wongputorn
,
P.
,
Hullender
,
D. A.
, and
Woods
,
R. L.
,
2003
, “
Rational Polynomial Transfer Function Approximations for Fluid Transients in Lines
,”
Fluids Engineering Division Summer Meeting
, Vol.
1
, pp.
2797
2804
.
16.
Karam
,
J. T.
, and
Leonard
,
R. G.
,
1973
, “
A Simple yet Theoretically Based Time Domain Model for Fluid Transmission Line Systems
,”
ASME J. Fluids Eng.
,
95
(
4
), pp.
498
504
.10.1115/1.3447062
17.
Krus
,
P.
,
Weddfelt
,
K.
, and
Palmberg
,
J.-O.
,
1994
, “
Fast Pipeline Models for Simulation of Hydraulic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
116
(
1
), pp.
132
136
.10.1115/1.2900667
18.
Johnston
,
N.
,
2012
, “
The Transmission Line Method for Modelling Laminar Flow of Liquid in Pipelines
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
226
(
5
), pp.
586
597
.10.1177/0959651811430035
19.
Jones
,
W. M.
,
1981
,
Control of Fluid Power: By D. McCloy and HR Martin
, 2nd ed.,
Ellis Horwood Ltd.
, (Revised Edition
1980
).
20.
Zielke
,
W.
,
1968
, “
Frequency-Dependent Friction in Transient Pipe Flow
,”
ASME J. Basic Eng.
,
90
(
1
), pp.
109
115
.10.1115/1.3605049
21.
El-Din
,
M. G.
, and
Rabi
,
M.
,
2009
,
Fluid Power Engineering
, 1st ed.,
McGraw-Hill Education
,
New York
.
22.
Chen
,
N. H.
,
1979
, “
An Explicit Equation for Friction Factor in Pipe
,”
Ind. Eng. Chem. Fundam.
,
18
(
3
), pp.
296
297
.10.1021/i160071a019
23.
Sanada
,
K.
,
Richards
,
C. W.
,
Longmore
,
D. K.
, and
Johnston
,
D. N.
,
1993
, “
A Finite Element Model of Hydraulic Pipelines Using an Optimized Interlacing Grid System
,”
Proc. Inst. Mech. Eng., Part I: J. Syst. Control Eng.
,
207
(
4
), pp.
213
222
.10.1243/PIME_PROC_1993_207_344_02
24.
Zhao
,
X.
, and
Vacca
,
A.
,
2017
, “
Formulation and Optimization of Involute Spur Gear in External Gear Pump
,”
Mech. Mach. Theory
,
117
, pp.
114
132
.10.1016/j.mechmachtheory.2017.06.020
25.
Vacca
,
A.
,
Casoli
,
P.
, and
Greco
,
M.
,
2009
, “
Experimental Analysis of Flow Through External Gear Machines
,”
Seventh Int. Conference on Fluid Power Transmission and Control
, Hangzhou, China, Apr. 7–9, pp.
1
5
.
26.
Zhou
,
J.
,
Vacca
,
A.
, and
Casoli
,
P.
,
2014
, “
A Novel Approach for Predicting the Operation of External Gear Pumps Under Cavitating Conditions
,”
Simul. Model. Pract. Theory
,
45
, pp.
35
49
.10.1016/j.simpat.2014.03.009
You do not currently have access to this content.