Abstract

We consider linear time-invariant dynamic systems in the single-input, single-output (SISO) framework. In particular, we consider stabilization of an inverted pendulum on a cart using a force on the cart. This system is easy to stabilize with pendulum angle feedback. However, with cart position feedback it cannot be stabilized with stable and proper compensators. Here, we demonstrate that with an additional compensator in a parallel feedforward loop, stabilization is possible with such compensators. Sensitivity to noise seems to be about three times worse than for the situation with angle feedback. For completeness, discussion is presented of compensator parameter choices, robustness, fragility, and comparison with another control approach.

References

1.
Youla
,
D. C.
,
Bongiorno
,
J. J.
, Jr
,., and
Lu
,
C. N.
,
1974
, “
Single-Loop Feedback-Stabilization of Linear Multivariable Dynamical Plants
,”
Automatica
,
10
(
2
), pp.
159
173
.10.1016/0005-1098(74)90021-1
2.
Blitzer
,
L.
,
1965
, “
Inverted Pendulum
,”
Am. J. Phys.
,
33
(
12
), pp.
1076
1078
.10.1119/1.1971158
3.
Phelps
,
F. M.
, III
, and
Hunter
, Jr.
,
J. H.
,
1965
, “
An Analytical Solution of the Inverted Pendulum
,”
Am. J. Phys.
,
33
(
4
), pp.
285
295
.10.1119/1.1971474
4.
Kalmus
,
H. P.
,
1970
, “
The inverted Pendulum
,”
Am. J. Phys.
,
38
(
7
), pp.
874
878
.10.1119/1.1976486
5.
Mori
,
S.
,
Nishihara
,
H.
, and
Furuta
,
K.
,
1976
, “
Control of Unstable Mechanical System Control of Pendulum
,”
Int. J. Control
,
23
(
5
), pp.
673
692
.10.1080/00207177608922192
6.
Cannon
,
R. H.
,
2003
,
Dynamics of Physical Systems
,
Courier Corporation
, Dover Publications, Mineola, NY.
7.
Dorf
,
R. C.
, and
Bishop
,
R. H.
,
2008
,
Modern Control Systems
,
Pearson Prentice Hall
, Upper Saddle River, NJ.
8.
Furuta
,
K.
,
Yamakita
,
M.
, and
Kobayashi
,
S.
,
1992
, “
Swing-Up Control of Inverted Pendulum Using Pseudo-State Feedback
,”
Proc. Inst. Mech. Eng., Part I
,
206
(
4
), pp.
263
269
.10.1243/PIME_PROC_1992_206_341_02
9.
Bradshaw
,
A.
, and
Shao
,
J.
,
1996
, “
Swing-Up Control of Inverted Pendulum Systems
,”
Robotica
,
14
(
4
), pp.
397
405
.10.1017/S0263574700019792
10.
Åström
,
K. J.
, and
Furuta
,
K.
,
2000
, “
Swinging Up a Pendulum by Energy Control
,”
Automatica
,
36
(
2
), pp.
287
295
.10.1016/S0005-1098(99)00140-5
11.
Bugeja
,
M.
,
2003
, “
Non-Linear Swing-Up and Stabilizing Control of an Inverted Pendulum System
,”
IEEE Region 8 EUROCON 2003. Computer as a Tool
, Vol.
2
, Ljubljana, Slovenia, Sept. 22–24, pp.
437
441
.10.1109/EURCON.2003.1248235
12.
Siuka
,
A.
, and
Schöberl
,
M.
,
2009
, “
Applications of Energy Based Control Methods for the Inverted Pendulum on a Cart
,”
Rob. Auton. Syst.
,
57
(
10
), pp.
1012
1017
.10.1016/j.robot.2009.07.016
13.
Milton
,
J.
,
Cabrera
,
J. L.
,
Ohira
,
T.
,
Tajima
,
S.
,
Tonosaki
,
Y.
,
Eurich
,
C. W.
, and
Campbell
,
S. A.
,
2009
, “
The Time-Delayed Inverted Pendulum: Implications for Human Balance Control
,”
Chaos: An Interdiscip. J. Nonlinear Sci.
,
19
(
2
), p.
026110
.10.1063/1.3141429
14.
Lee
,
J.
,
Mukherjee
,
R.
, and
Khalil
,
H. K.
,
2015
, “
Output Feedback Stabilization of Inverted Pendulum on a Cart in the Presence of Uncertainties
,”
Automatica
,
54
, pp.
146
157
.10.1016/j.automatica.2015.01.013
15.
Bogdanov
,
A.
,
2004
, “
Optimal Control of a Double Inverted Pendulum on a Cart
,” Oregon Health and Science University, OGI School of Science and Engineering, Beaverton, Report No. CSE-04-006.
16.
Dastranj
,
M. R.
,
Moghaddas
,
M.
,
Ghezi
,
Y.
, and
Rouhani
,
M.
,
2012
, “
Robust Control of Inverted Pendulum Using FuzzySliding Mode Control and Genetic Algorithm
,”
Int. J. Inf. Electron. Eng.
,
2
(
5
), p.
773
.10.7763/IJIEE.2012.V2.205
17.
Nour
,
M. I. H.
,
Ooi
,
J.
, and
Chan
,
K. Y.
,
2007
, “
Fuzzy Logic Control vs. conventional PID Control of an Inverted Pendulum Robot
,”
International Conference on Intelligent and Advanced Systems
,
IEEE
, Kuala Lumpur, Malaysia, Nov. 25–28, pp.
209
214
.10.1109/ICIAS.2007.4658376
18.
Zabihifar
,
S. H.
,
Yushchenko
,
A. S.
, and
Navvabi
,
H.
,
2020
, “
Robust Control Based on Adaptive Neural Network for Rotary Inverted Pendulum With Oscillation Compensation
,”
Neural Comput. Appl.
,
32
(
18
), pp.
14667
14679
.10.1007/s00521-020-04821-x
19.
Bar-Kana
,
I.
,
1987
, “
On Parallel Feedforward and Simplified Adaptive Control
,”
Int. J. Adaptive Control Signal Process.
,
1
(
2
), pp.
95
109
.10.1002/acs.4480010202
20.
Palis
,
S.
, and
Kienle
,
A.
,
2014
, “
Discrepancy Based Control of Particulate Processes
,”
J. Process Control
,
24
(
3
), pp.
33
46
.10.1016/j.jprocont.2013.12.003
21.
Kim
,
H.
,
Kim
,
S.
,
Back
,
J.
,
Shim
,
H.
, and
Seo
,
J. H.
,
2016
, “
Design of Stable Parallel Feedforward Compensator and Its Application to Synchronization Problem
,”
Automatica
,
64
, pp.
208
216
.10.1016/j.automatica.2015.11.020
22.
Golovin
,
I.
, and
Palis
,
S.
,
2017
, “
Design of Parallel Feed-Forward Compensator and Its Application to Electromechanical System With Friction Load
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
15524
15529
.10.1016/j.ifacol.2017.08.2134
23.
Golovin
,
I.
, and
Palis
,
S.
,
2021
, “
PFC-Based Control of Friction-Induced Instabilities in Drive Systems
,”
Machines
,
9
(
7
), p.
134
.10.3390/machines9070134
24.
Goswami
,
B.
, and
Chatterjee
,
A.
,
2023
, “
Balancing a Stick With Eyes Shut: Inverted Pendulum on a Cart Without Angle Measurement
,” preprint arXiv: 2301.04289.
25.
Ogata
,
K.
,
2010
,
Modern Control Engineering
, Vol.
5
,
Prentice Hall
,
Upper Saddle River, NJ
.
26.
Röbenack
,
K.
, and
Palis
,
S.
,
2019
, “
On the Control of Non-Minimum Phase Systems Using a Parallel Compensator
,”
International Conference on System Theory, Control and Computing
(
ICSTCC
),
IEEE
, Sinaia, Romania, Oct. 9–11, pp.
308
313
.10.1109/ICSTCC.2019.8885748
You do not currently have access to this content.