Abstract

Combined powertrain and velocity optimization can achieve significant energy efficiency improvements. However, due to the multitime scales in the system, the optimization is performed hierarchically and by separating time scales. To enforce state constraints, iteration between controller is introduced, for example, using Lagrange multipliers as metric for constraint violation. In this paper, an extension of the Koopman operator theory is presented with to obtain a data-driven approximation of the multipliers' behavior hence eliminating the need for iterations. Because the evolution of the Lagrange multipliers is the result of a fast dynamics optimization problem, and not the response of a nonlinear dynamical system, a novel technique in which the Lagrange multipliers are interpreted as a dynamic system is presented here. The approximate Koopman linear system is then derived using extended dynamic mode decomposition and it is integrated with the slow dynamic optimization. Results show that the Koopman augmented controller, which is solved as one single optimization, meets state and input constraints and achieves similar energy savings compared to an iterative approach.

References

1.
Davis, S., and Boundy, R. G.
,
2022
, “
Transportation Energy Data Book
,” 40th ed., Oak Ridge National Labpratory, Oak Ridge, TN.
2.
Hellström
,
E.
,
Ivarsson
,
M.
,
Aslund
,
J.
, and
Nielsen
,
L.
,
2009
, “
Look-Ahead Control for Heavy Trucks to Minimize Trip Time and Fuel Consumption
,”
Control Eng. Pract.
,
17
(
2
), pp.
245
254
.10.1016/j.conengprac.2008.07.005
3.
van Keulen
,
T.
,
de Jager
,
B.
,
Foster
,
D.
, and
Steinbuch
,
M.
,
2010
, “
Velocity Trajectory Optimization in Hybrid Electric Trucks
,”
Proceedings of the 2010 American Control Conference
,
IEEE, Baltimore, MD, June 30–July 2
, pp.
5074
55079
.10.1109/ACC.2010.5530695
4.
Pelletier
,
E.
,
Bai
,
W.
,
Alvarez Tiburcio
,
M.
,
Borek
,
J.
,
Boyle
,
S.
,
Earnhardt
,
C.
,
Gao
,
L.
, et al.,
2021
, “
In-Vehicle Validation of Heavy-Duty Vehicle Fuel Savings Via a Hierarchical Predictive Online Controller
,”
SAE
Paper No. 2021-01-0432.10.4271/2021-01-0432
5.
Deshpande
,
S. R.
,
Gupta
,
S.
,
Kibalama
,
D.
,
Pivaro
,
N.
,
Canova
,
M.
,
Rizzoni
,
G.
,
Aggoune
,
K.
,
Olin
,
P.
, and
Kirwan
,
J.
,
2021
, “
In-Vehicle Test Results for Advanced Propulsion and Vehicle System Controls Using Connected and Automated Vehicle Information
,”
SAE
Paper No. 2021-01-0430.10.4271/2021-01-0430
6.
Rengarajan
,
S.
,
Hotz
,
S.
,
Sarlashkar
,
J.
,
Gankov
,
S.
,
Bhagdikar
,
P.
,
Gross
,
M. C.
, and
Hirsch
,
C.
,
2020
, “
Energy Efficient Maneuvering of Connected and Automated Vehicles
,”
SAE
Paper No. 2020-01-0583.10.4271/2020-01-0583
7.
Vohra
,
V.
,
Wahba
,
M.
,
Akarslan
,
G.
,
Ni
,
R.
, and
Brennan
,
S.
,
2019
, “
An examination of Vehicle Spacing to Reduce Aerodynamic Drag in Truck Platoons
,” Proceedings of IEEE Vehicle Power and Propulsion Conference (
VPPC
),
Institute of Electrical and Electronics Engineers Inc
., Chicago, IL, Aug. 27–30.10.1109/VPPC.2018.8604977
8.
Smith
,
S. W.
,
Kim
,
Y.
,
Guanetti
,
J.
,
Kurzhanskiy
,
A. A.
,
Arcak
,
M.
, and
Borrelli
,
F.
,
2019
, “
Balancing Safety and Traffic Throughput in Cooperative Vehicle Platooning
,” 18th European Control Conference (
ECC
), Naples, Italy, June 25–28,
Institute of Electrical and Electronics Engineers Inc
., pp.
2197
2202
.10.23919/ECC.2019.8795628
9.
Ngo
,
V. D.
,
Colin Navarrete
,
J. A.
,
Hofman
,
T.
,
Steinbuch
,
M.
, and
Serrarens
,
A.
,
2013
, “
Optimal Gear Shift Strategies for Fuel Economy and Driveability
,”
Proc. Inst. Mech. Eng., Part D.
,
227
(
10
), pp.
1398
1413
.10.1177/0954407013491240
10.
Xu
,
C.
,
Geyer
,
S.
, and
Fathy
,
H. K.
,
2019
, “
Formulation and Comparison of Two Real-Time Predictive Gear Shift Algorithms for Connected/Automated Heavy-Duty Vehicles
,”
IEEE Trans. Veh. Technol.
,
68
(
8
), pp.
7498
7510
.10.1109/TVT.2019.2921702
11.
Rodriguez
,
M.
, and
Fathy
,
H.
,
2019
, “
Self-Synchronization of Connected Vehicles in Traffic Networks: What Happens When We Think of Vehicles as Waves?
,” 2019 American Control Conference (
ACC
),
IEEE
, Philadelphia, PA, July 10–12, pp.
2651
2657
.10.23919/ACC.2019.8815308
12.
Sun
,
C.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S. J.
,
2020
, “
Optimal Eco-Driving Control of Connected and Autonomous Vehicles Through Signalized Intersections
,”
IEEE Internet Things J.
,
7
(
5
), pp.
3759
3773
.10.1109/JIOT.2020.2968120
13.
Amini
,
M. R.
,
Wang
,
H.
,
Gong
,
X.
,
Liao-Mcpherson
,
D.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2020
, “
Cabin and Battery Thermal Management of Connected and Automated Hevs for Improved Energy Efficiency Using Hierarchical Model Predictive Control
,”
IEEE Trans. Control Syst. Technol.
,
28
(
5
), pp.
1711
1726
.10.1109/TCST.2019.2923792
14.
Block
,
B.
,
Huynh
,
B.
,
Boyle
,
S.
,
Stockar
,
S.
,
Geyer
,
S.
,
Li
,
J.
, and
Huber
,
J.
,
2019
, “
Analysis of the Effect of Vehicle Platooning on the Optimal Control of a Heavy Duty Engine Thermal System
,”
SAE
Paper No. 2019-01-1259.10.4271/2019-01-1259
15.
Chen
,
X.
,
Heidarinejad
,
M.
,
Liu
,
J.
,
De La Peña
,
D. M.
, and
Christofides
,
P. D.
,
2011
, “
Model Predictive Control of Nonlinear Singularly Perturbed Systems: Application to a Large-Scale Process Network
,”
J. Process Control
,
21
(
9
), pp.
1296
1305
.10.1016/j.jprocont.2011.07.004
16.
Chen
,
X.
,
Heidarinejad
,
M.
,
Liu
,
J.
, and
Christofides
,
P. D.
,
2012
, “
Composite Fast-Slow MPC Design for Nonlinear Singularly Perturbed Systems: Stability Analysis
,”
Proceedings of the American Control Conference
, Montreal, QC, Canada, June 27–29, pp.
4136
4141
.10.1109/ACC.2012.6314744
17.
Tica
,
A.
,
Gueguen
,
H.
,
Dumur
,
D.
,
Faille
,
D.
, and
Davelaar
,
F.
,
2012
, “
Hierarchical nonlinear Model Predictive Control for Combined Cycle Start-Up Optimization
,”
Proceedings of the IEEE Conference on Decision and Control
, Maui, HI, Dec. 10–13, pp.
2593
2598
.10.1109/CDC.2012.6425843
18.
Falcone
,
P.
,
Borrelli
,
F.
,
Tseng
,
H. E.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2008
, “
A Hierarchical Model Predictive Control Framework for Autonomous Ground Vehicles
,”
2008 American Control Conference
,
IEEE
, Seattle, WA, June 11–13, pp.
3719
3724
.10.1109/ACC.2008.4587072
19.
Dang Doan
,
M.
,
Keviczky
,
T.
, and
De Schutter
,
B.
,
2011
, “
A Dual Decomposition-Based Optimization Method With Guaranteed Primal Feasibility for Hierarchical MPC Problems
,”
IFAC Proc.
Vol.
44
(
1
), pp.
392
397
.10.3182/20110828-6-IT-1002.03058
20.
Picasso
,
B.
,
De Vito
,
D.
,
Scattolini
,
R.
, and
Colaneri
,
P.
,
2010
, “
An MPC Approach to the Design of Two-Layer Hierarchical Control Systems
,”
Automatica
,
46
(
5
), pp.
823
831
.10.1016/j.automatica.2010.02.013
21.
Raimondo
,
D.
,
Magni
,
L.
, and
Scattolini
,
R.
,
2007
, “
Decentralized MPC of Nonlinear Systems: An Input-to-State Stability Approach
,”
Int. J. Robust Nonlinear Control
,
17
(
17
), pp.
1651
1667
.10.1002/rnc.1214
22.
Lefort
,
A.
,
Bourdais
,
R.
,
Ansanay-Alex
,
G.
, and
Guéguen
,
H.
,
2013
, “
Hierarchical Control Method Applied to Energy Management of a Residential House
,”
Energy and Buildings
, 64, pp.
53
61
.10.1016/j.enbuild.2013.04.010
23.
Scattolini
,
R.
, and
Colaneri
,
P.
,
2007
, “
Hierarchical model Predictive Control
,”
Proceedings of the IEEE Conference on Decision and Control
, New Orleans, LA, Dec. 12–14, pp.
4803
4808
.10.1109/CDC.2007.4434079
24.
Ulbig
,
A.
,
Arnold
,
M.
,
Chatzivasileiadis
,
S.
, and
Andersson
,
G.
,
2011
, “
Framework for Multiple Time-Scale Cascaded MPC Application in Power Systems
,”
IFAC Proc.
Vol.
44
(
1
), pp.
10472
10480
.10.3182/20110828-6-IT-1002.01859
25.
Boyle
,
S.
, and
Stockar
,
S.
,
2022
, “
Multi time-Scale Engine and Powertrain Control for Autonomous Vehicles Via Lagrange Multipliers
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
1
), p. 011103.10.1115/1.4052766
26.
Chiara
,
F.
,
Wang
,
J.
,
Patil
,
C. B.
,
Hsieh
,
M.-F.
, and
Yan
,
F.
,
2011
, “
Development and Experimental Validation of a Control-Oriented Diesel Engine Model for Fuel Consumption and Brake Torque Predictions
,”
Math. Comput. Modell. Dyn. Syst.
,
17
(
3
), pp.
261
277
.10.1080/13873954.2011.562902
27.
Hendricks
,
E.
,
Chevalier
,
A.
,
Jensen
,
M.
,
Sorenson
,
S. C.
,
Trumpy
,
D.
, and
Asik
,
J.
,
1996
, “
Modelling of the Intake Manifold Filling Dynamics
,”
SAE
Paper No. 960037. 10.4271/960037
28.
Heywood
,
J.
,
2018
,
Internal Combustion Engine Fundamentals, Second Edition
, 2nd ed.,
McGraw-Hill Education
, New York.
29.
Boyle
,
S.
, and
Stockar
,
S.
,
2019
, “
Comparison of Input Shaping and Predictive Reference Generator Techniques for IC Engine Setpoints Commands
,”
IFAC-PapersOnLine
,
55
(
5
), pp.
279
284
.10.1016/j.ifacol.2019.09.045
30.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
, Cambridge, UK.
31.
Brdys
,
M. A.
,
Grochowski
,
M.
,
Gminski
,
T.
,
Konarczak
,
K.
, and
Drewa
,
M.
,
2008
, “
Hierarchical Predictive Control of Integrated Wastewater Treatment Systems
,”
Control Eng. Pract.
,
16
(
6
), pp.
751
767
.10.1016/j.conengprac.2007.01.008
32.
Bertsekas
,
D.
,
2016
,
Nonlinear Programming
, 3rd ed.,
Athena Scientific
,
Belmont, MA
.
33.
Nocedal
,
J.
, and
Wright
,
S.
,
1999
,
Numerical Optimization
, 1st ed.,
Springer
,
New York
.
34.
Gurney
,
K.
,
2018
,
An Introduction to Neural Networks
,
CRC Press
, Boca Raton, FL.
35.
Qin
,
S.
, and
Xue
,
X.
,
2015
, “
A two-Layer Recurrent Neural Network for Nonsmooth Convex Optimization Problems
,”
IEEE Trans. Neural Networks Learn. Syst.
,
26
(
6
), pp.
1149
1160
.10.1109/TNNLS.2014.2334364
36.
Luo
,
X.
,
Lv
,
Y.
,
Zhou
,
M.
,
Wang
,
W.
, and
Zhao
,
W.
,
2016
, “
A laguerre Neural Network-Based ADP Learning Scheme With Its Application to Tracking Control in the Internet of Things
,”
Pers. Ubiquitous Comput.
,
20
(
3
), pp.
361
372
.10.1007/s00779-016-0916-x
37.
Koopman
,
B.
,
1931
, “Hamiltonian Systems and Transformations in Hilbert Space”.
Proc. Natl. Acad. Sci.
, 17(5), pp.
315
318
.10.1073/pnas.17.5.315
38.
Proctor
,
J. L.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2016
, “
Generalizing Koopman Theory to Allow for Inputs and Control
,”
SIAM J. Appl. Dyn. Syst.
,
17
(
1
), pp.
909
930
.10.1137/16M1062296
39.
Cibulka
,
V.
,
Haniš
,
T.
, and
Hromčík
,
M.
,
2019
, “
Data-Driven Identification of Vehicle Dynamics Using Koopman Operator
,” 2019 22nd International Conference on Process Control (
PC19
),
IEEE
, Strbske Pleso, Slovakia, June 11–14, pp.
167
172
.10.1109/PC.2019.8815104
40.
Korda
,
M.
, and
Mezić
,
I.
,
2018
, “
Linear Predictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control
,”
Automatica
,
93
(
7
), pp.
149
160
.10.1016/j.automatica.2018.03.046
41.
Mauroy
,
A.
, and
Goncalves
,
J.
,
2020
, “
Koopman-Based Lifting Techniques for Nonlinear Systems Identification
,”
IEEE Trans. Autom. Control
,
65
(
6
), pp.
2550
2565
.10.1109/TAC.2019.2941433
42.
Arbabi
,
H.
,
Korda
,
M.
, and
Mezic
,
I.
,
2018
, “
A data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial Differential Equations
,”
IEEE Conference on Decision and Control
, Miami Beach, FL, Dec. 17–19, pp.
6409
6414
.10.1109/CDC.2018.8619720
43.
Korda
,
M.
, and
Mezić
,
I.
,
2020
, “
Optimal Construction of Koopman Eigenfunctions for Prediction and Control
,”
IEEE Trans. Autom. Control
,
65
(
12
), pp.
5114
5129
.10.1109/TAC.2020.2978039
44.
Bruder
,
D.
,
Gillespie
,
B.
,
Remy
,
C. D.
, and
Vasudevan
,
R.
,
2019
, “
Modeling and Control of Soft Robots Using the Koopman Operator and Model Predictive Control
,”
arXiv preprint arXiv:1902.02827
.
45.
Igarashi
,
Y.
,
Yamakita
,
M.
,
Ng
,
J.
, and
Asada
,
H. H.
,
2020
, “
MPC Performances for Nonlinear Systems Using Several Linearization Models
,”
American Control Conference
, Denver, CO, July 1–3, pp.
2426
2431
.10.23919/ACC45564.2020.9147306
46.
Williams
,
M. O.
,
Kevrekidis
,
I. G.
, and
Rowley
,
C. W.
,
2015
, “
A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition
,”
J. Nonlinear Sci.
,
25
(
6
), pp.
1307
1346
.10.1007/s00332-015-9258-5
47.
Kaiser
,
E.
,
Kutz
,
J. N.
, and
Brunton
,
S. L.
,
2021
, “
Data-Driven Discovery of Koopman Eigenfunctions for Control
,”
Mach. Learn.: Sci. Technol.
,
2
(
3
), p.
035023
.10.1088/2632-2153/abf0f5
48.
Gilbert
,
E. G.
,
1976
, “
Vehicle Cruise: Improved Fuel Economy by Periodic Control
,”
Automatica
,
12
(
2
), pp.
159
166
.10.1016/0005-1098(76)90079-0
You do not currently have access to this content.