Abstract

Removing the integrated starter generator (ISG) in P2 hybrid electric vehicles (HEVs) reduces the overall cost of the powertrain, yet it comes with an additional control complexity of the engine-start process. An appropriate coordination control strategy between the internal combustion engine (ICE), drive motor, and clutch is necessary to reduce the time for the engine-start while constraining the vehicle jerk. A time-optimal coordination control strategy with a predesigned vehicle acceleration trajectory is proposed from results of nonlinear model predictive control (NMPC), which can reduce the time for the engine-start process and obtain a small vehicle jerk. A dynamic model for the engine-start process is first built. In this model, a cylinder-by-cylinder engine model (CCEM) is derived to describe the ICE dynamics. A Karnopp and Stribeck combined wet clutch model is proposed to handle effects of speed difference on the torque, and calculation problem of frequent switches when crossing zero speed point. Subsequently, the optimal control problem is formulated with selected states and solved with NMPC. Finally, a rule-based control strategy is extracted from results of NMPC. Simulation results show that the engine-start process can finish within 260 ms, 13.3% less than the previous study, with a predesigned vehicle acceleration to ensure the vehicle jerk within 10 m/s3 and the peak to peak vehicle acceleration within 0.2 m/s2 in the case study under investigation.

References

1.
Chan
,
C. C.
,
Bouscayrol
,
A.
, and
Chen
,
K.
,
2010
, “
Electric, Hybrid, and Fuel-Cell Vehicles: Architectures and Modeling
,”
IEEE Trans. Veh. Technol.
,
59
(
2
), pp.
589
598
.10.1109/TVT.2009.2033605
2.
Hackmann
,
W.
,
Wagner
,
B.
,
Zwingel
,
R.
,
Dziedzek
,
I.
, and
Welke
,
K.
,
2007
, “
Fremderregte Synchronmaschinen im Einsatz Als Achshybridantriebe
,”
International ETG Congress
,
Karlsruhe, Germany
, Oct. 23–24, pp.
55
64
.
3.
Smith
,
A.
,
Bucknor
,
N.
,
Yang
,
H.
, and
He
,
Y.
,
2011
, “
Controls Development for Clutch-Assisted Engine Starts in a Parallel Hybrid Electric Vehicle
,”
SAE
Paper No. 2011-01-0870.10.4271/2011-01-0870
4.
Song
,
M.
,
Oh
,
J.
,
Choi
,
S.
,
Kim
,
Y.
, and
Kim
,
H.
,
2013
, “
Motor Control of a Parallel Hybrid Electric Vehicle During Mode Change Without an Integrated Starter Generator
,”
J. Electr. Eng. Technol.
,
8
(
4
), pp.
930
937
.10.5370/JEET.2013.8.4.930
5.
Kum
,
D.
,
Peng
,
H.
, and
Bucknor
,
N. K.
,
2013
, “
Control of Engine-Starts for Optimal Drivability of Parallel Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
135
(
2
), p.
021020
.10.1115/1.4023067
6.
Chen
,
L.
,
Xi
,
G.
, and
Sun
,
J.
,
2012
, “
Torque Coordination Control During Mode Transition for a Series–Parallel Hybrid Electric Vehicle
,”
IEEE Trans. Veh. Technol.
,
61
(
7
), pp.
2936
2949
.10.1109/TVT.2012.2200305
7.
Lei
,
Z.
,
Sun
,
D.
,
Liu
,
Y.
,
Qin
,
D.
,
Zhang
,
Y.
,
Yang
,
Y.
, and
Chen
,
L.
,
2017
, “
Analysis and Coordinated Control of Mode Transition and Shifting for a Full Hybrid Electric Vehicle Based on Dual Clutch Transmissions
,”
Mech. Mach. Theory
,
114
, pp.
125
140
.10.1016/j.mechmachtheory.2017.04.001
8.
Xu
,
X.
,
Wu
,
X.
,
Jordan
,
M.
,
Dong
,
P.
, and
Liu
,
Y.
,
2018
, “
Coordinated Engine-Start Control of Single-Motor P2 Hybrid Electric Vehicles With Respect to Different Driving Situations
,”
Energies
,
11
(
1
), p.
207
.10.3390/en11010207
9.
Dong
,
P.
,
Wu
,
S.
,
Guo
,
W.
,
Xu
,
X.
,
Wang
,
S.
, and
Liu
,
Y.
,
2020
, “
Coordinated Clutch Slip Control for the Engine Start of Vehicles With P2-Hybrid Automatic Transmissions
,”
Mech. Mach. Theory
,
153
(
3
), p.
103899
.10.1016/j.mechmachtheory.2020.103899
10.
Ning
,
J.
,
Zhu
,
G.
, and
Qu
,
B.
,
2018
, “
Development of a Engine Start Control Method for P2 Hybrid Vehicles in Launch Situation
,”
IFAC-PapersOnLine
,
51
(
31
), pp.
7
10
.10.1016/j.ifacol.2018.10.002
11.
Zhao
,
C.
,
Zu
,
B.
,
Xu
,
Y.
,
Wang
,
Z.
, and
Zhao
,
G.
,
2019
, “
Analysis of a Coordinated Engine-Start Control Strategy for P2 Hybrid Electric Vehicle
,”
SAE
Paper No. 2019-01-5023.10.4271/2019-01-5023
12.
Zhao
,
C.
,
Zu
,
B.
,
Xu
,
Y.
,
Wang
,
Z.
,
Zhou
,
J.
, and
Liu
,
L.
,
2020
, “
Design and Analysis of an Engine-Start Control Strategy for a Single-Shaft Parallel Hybrid Electric Vehicle
,”
Energy
,
202
, p.
117621
.10.1016/j.energy.2020.117621
13.
Cvok
,
I.
,
Ranogajec
,
V.
,
Deur
,
J.
,
Zhang
,
Y.
,
Ivanovic
,
V.
, and
Fujii
,
Y.
,
2022
, “
Analysis of Improving Automatic Transmission Upshift Performance by Using Off-Going Clutch During Inertia Phase
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
2
), p.
021005
.10.1115/1.4052491
14.
Sun
,
G.
,
Sun
,
D.
,
Ma
,
K.
,
Kan
,
Y.
, and
Shi
,
J.
,
2022
, “
Analysis and Control of Engine Starting Process Based on a Novel Single-Motor Power-Reflux Hybrid Electric Vehicle
,”
Mech. Mach. Theory
,
168
, p.
104616
.10.1016/j.mechmachtheory.2021.104616
15.
Beck
,
R.
,
Richert
,
F.
,
Bollig
,
A.
,
Abel
,
D.
, and
Noreikat
,
K. E.
,
2005
, “
Model Predictive Control of a Parallel Hybrid Vehicle Drivetrain
,” IEEE Conference on Decision and Control European Control Conference (
CDC-ECC
), Seville, Spain, Dec. 15, pp.
2670
2675
.10.1109/CDC.2005.1582566
16.
Dudek
,
R.
,
Smidl
,
V.
, and
Peroutka
,
Z.
,
Start-Stop System for a City Bus Based on Model Predictive Control
, IECON 2014-40th Annual Conference of the IEEE Industrial Electronics Society,
IEEE
, Dallas, TX.
17.
Stroe
,
N.
,
Olaru
,
S.
,
Colin
,
G.
,
Ben-Cherif
,
K.
, and
Chamaillard
,
Y.
,
2018
, “
Time-Varying MPC-Based Energy Management for HEV Including Engine Stop & Start
,”
International Conference on System Theory
, Sinaia, Romania, Oct. 13–15, pp. 790–795.10.1109/ICSTCC.2016.7790764
18.
Han
,
Z.
,
Hu
,
Y.
,
Sun
,
P.
, and
Hong
,
C.
,
2017
, “
Model Predictive Control of Diesel Engine Start-Stop Control in an HEV
,” 36th Chinese Control Conference (
CCC
), Dalian, China, July 26–28, pp.
9590
9595
.10.23919/ChiCC.2017.8028888
19.
Wang
,
D.
,
Hu
,
M.
,
Li
,
B.
,
Qin
,
D.
, and
Sun
,
D.
,
2020
, “
Study on the Influence Factors Upon the Propensity to Stick-Slip Phenomenon During Vehicle Start-Up Process
,”
IEEE Access
,
8
(
99
), pp.
12343
12353
.10.1109/ACCESS.2020.2966001
20.
He
,
Y.
,
Bucknor
,
N. K.
,
Smith
,
A. L.
, and
Yang
,
H.
,
2010
, “
Modeling and Drivability Assessment of a Single-Motor Strong Hybrid at Engine Start
,”
SAE
Paper No. 2010-01-1440.10.4271/2010-01-1440
21.
Shin
,
C.
,
Choi
,
J.
,
Cha
,
S.
, and
Lim
,
W.
,
2014
, “
An Objective Method of Driveability Evaluation Using a Simulation Model for Hybrid Electric Vehicles
,”
Int. J. Precis. Eng. Manuf.
,
15
(
2
), pp.
219
226
.10.1007/s12541-014-0328-7
22.
Sim
,
K.
,
Oh
,
S.-M.
,
Namkoong
,
C.
,
Lee
,
J.-S.
,
Han
,
K.-S.
, and
Hwang
,
S.-H.
,
2017
, “
Control Strategy for Clutch Engagement During Mode Change of Plug-In Hybrid Electric Vehicle
,”
Int. J. Automot. Technol.
,
18
(
5
), pp.
901
909
.10.1007/s12239-017-0088-3
23.
Huang
,
W.
,
Liu
,
H. J.
, and
Ma
,
Y. F.
,
2019
, “
Drivability Evaluation Model Using Principal Component Analysis and Optimized Extreme Learning Machine
,”
J. Vib. Control
,
25
(
16
), pp.
2274
2281
.10.1177/1077546319852487
24.
Karlsson
,
J.
, and
Fredriksson
,
J.
,
1999
, “
Cylinder-by-Cylinder Engine Models versus Mean Value Engine Models for Use in Powertrain Control Applications
,”
SAE
Paper No. 1999-01-0906.10.4271/1999-01-0906
25.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst., Meas., Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
26.
Stribeck
,
R.
,
1903
,
Wesentliche Eigenschaften der Gleit-und Rollenlager
,
Springer
, pp. 1341–1348, 1432–1438 and
1463
1470
.
27.
Andersson
,
S.
,
Söderberg
,
A.
, and
Björklund
,
S.
,
2007
, “
Friction Models for Sliding Dry, Boundary and Mixed Lubricated Contacts
,”
Tribol. Int.
,
40
(
4
), pp.
580
587
.10.1016/j.triboint.2005.11.014
28.
Bianchi
,
D.
,
Rolando
,
L.
,
Serrao
,
L.
,
Onori
,
S.
,
Rizzoni
,
G.
,
Khayat
,
N. A.
,
Hsieh
,
T. M.
, and
Kang
,
P.
,
2011
, “
Layered Control Strategies for Hybrid Electric Vehicles Based on Optimal Control
,”
Int. J. Electr. Hybrid Veh.
,
3
(
2
), pp.
191
217
.10.1504/IJEHV.2011.042147
29.
Biasini
,
R.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2013
, “
A near-Optimal Rule-Based Energy Management Strategy for Medium Duty Hybrid Truck
,”
Int. J. Powertrains
,
2
(
2/3
), pp.
232
261
.10.1504/IJPT.2013.054151
30.
Ramste30dt
,
M.
,
2004
, “
Cylinder-by-Cylinder Diesel Engine Modelling: A Torque-Based Approach
,” Master’s thesis, Department of Electrical Engineering, Linkoping University, Linköping, Sweden.
31.
Hashemzadeh Nayeri
,
M.
,
2005
, “
Cylinder-by-Cylinder Torque Model of an SI-Engine for Real-Time Applications
,” Master’s thesis, Department of Electrical Engineering, Linkoping University, Linköping, Sweden.
32.
Kiencke
,
U.
, and
Nielsen
,
L.
,
2000
,
Automotive Control Systems: For Engine, Driveline, and Vehicle
, Springer Berlin, Heidelberg/New York.
33.
Romano
,
R. A.
, and
Garcia
,
C.
,
2008
, “
Karnopp Friction Model Identification for a Real Control Valve
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
14906
14911
.10.3182/20080706-5-KR-1001.02523
34.
Aberger
,
M.
, and
Otter
,
M.
,
2002
, “
Modeling Friction in Modelica With the Lund-Grenoble Friction Model
,” Proceedings of 2nd International Modelica Conference, Oberpfaffenhofen, Mar. 18–19, pp. 285–294. Modelica 2002, Mar. 18–19, Oberpfaffenhofen.
35.
Berger
,
E. J.
,
2002
, “
Friction Modeling for Dynamic System Simulation
,”
ASME Appl. Mech. Rev.
,
55
(
6
), pp.
535
577
.10.1115/1.1501080
36.
Sim
,
K.
,
Oh
,
S.-M.
,
Kang
,
K.-Y.
, and
Hwang
,
S.-H.
,
2017
, “
A Control Strategy for Mode Transition With Gear Shifting in a Plug-In Hybrid Electric Vehicle
,”
Energies
,
10
(
7
), p.
1043
.10.3390/en10071043
37.
Mathworks
,
2021
, “nlmpc,” Mathworks, Natick, MA, 2021, accessed Nov. 11, 2022, https://ww2.mathworks.cn/help/mpc/ref/nlmpc.html
38.
Nocedal
,
J.
, and
Wright
,
S.
,
2006
,
Numerical Optimization
,
Springer Science & Business Media
, New York.
39.
Khajepour
,
A.
,
Fallah
,
M. S.
, and
Goodarzi
,
A.
,
2014
, “
Electric and Hybrid Vehicles
,”
Int. J. Veh. Des.
,
200
(
152
) pp.
2/1
2/4
.https://www.wiley.com/enus/Electric+and+Hybrid+Vehicles%3A+Technologies%2C+Modeling+and+Control+A+Mechatronic+Approach-p-9781118341513
You do not currently have access to this content.