Abstract

This work examines the stabilization problem for periodic piecewise systems (PPSs) with state and input delays, actuator saturations, and external disturbances via an antiwindup compensator (AWC)-based dynamic controller. Specifically, the undesirable consequences caused by saturation are alleviated by implementing the AWC-based dynamic controller. More precisely, AWC not only eliminates the saturation effects but also enlarges the estimation of the domain of attraction. Moreover, by constructing a suitable Lyapunov–Krasovskii functional, the sufficient conditions affirming asymptotic stability of addressed PPSs are established in the form of linear matrix inequalities (LMIs). Notably, the developed LMI conditions can be effectively solved using standard numerical packages and the desired antiwindup gain matrices can be calculated with satisfactory disturbance attenuation level. Finally, two numerical examples are given to demonstrate the usefulness and efficiency of the developed theoretical findings.

References

1.
Zhu
,
B.
,
Lam
,
J.
, and
Ebihara
,
Y.
,
2021
, “
Input-Output Gain Analysis of Positive Periodic Systems
,”
Int. J. Robust Nonlinear Control
,
31
(
8
), pp.
2928
2945
.10.1002/rnc.5438
2.
Yang
,
L.
,
Gao
,
Y.
,
Zhao
,
Y.
, and
Wu
,
L.
,
2020
, “
Finite-Time Control of Periodic Systems With Event-Triggering Mechanisms
,”
IET Control Theory Appl.
,
14
(
8
), pp.
1012
1021
.10.1049/iet-cta.2019.0817
3.
Zhou
,
J.
,
2020
, “
Stability Analysis and Stabilisation in Linear Continuous-Time Periodic Systems by Complex Scaling
,”
Int. J. Control
,
93
(
9
), pp.
2053
2065
.10.1080/00207179.2018.1540888
4.
Liu
,
Y.
,
Li
,
P.
, and
Zhang
,
B.
,
2021
, “
Non-Fragile H Control of Periodic Piecewise Time-Varying Systems Based on Matrix Polynomial Approach
,”
Int. J. Syst. Sci.
,
52
(
4
), pp.
805
820
.10.1080/00207721.2020.1841846
5.
Li
,
P.
,
Xing
,
M.
,
Liu
,
Y.
, and
Zhang
,
B.
,
2020
, “
New Conditions of Analysis and Synthesis for Periodic Piecewise Linear Systems With Matrix Polynomial Approach
,”
IEEE Access
,
8
, pp.
52631
52640
.10.1109/ACCESS.2020.2980323
6.
Liu
,
Y.
,
Song
,
Y.
,
Qu
,
H.
, and
Chen
,
Z.
,
2020
, “
Stabilization and L2-Gain Performance of Periodic Piecewise Impulsive Linear Systems
,”
IEEE Access
,
8
, pp.
200146
200156
.10.1109/ACCESS.2020.3035024
7.
Li
,
P.
,
Lam
,
J.
,
Kwok
,
K. W.
, and
Lu
,
R.
,
2018
, “
Stability and Stabilization of Periodic Piecewise Linear Systems: A Matrix Polynomial Approach
,”
Automatica
,
94
, pp.
1
8
.10.1016/j.automatica.2018.02.015
8.
Xie
,
X.
,
Lam
,
J.
, and
Kwok
,
K. W.
,
2020
, “
A Novel Scheme of Nonfragile Controller Design for Periodic Piecewise LTV Systems
,”
IEEE Trans. Ind. Electron.
,
67
(
12
), pp.
10766
10775
.10.1109/TIE.2019.2962439
9.
Xie
,
X.
,
Lam
,
J.
, and
Fan
,
C.
,
2018
, “
Robust Time-Weighted Guaranteed Cost Control of Uncertain Periodic Piecewise Linear Systems
,”
Inf. Sci.
,
460–461
, pp.
238
253
.10.1016/j.ins.2018.05.052
10.
Li
,
Z.
,
Yan
,
H.
,
Zhang
,
H.
,
Peng
,
Y.
,
Park
,
J. H.
, and
He
,
Y.
,
2020
, “
Stability Analysis of Linear Systems With Time-Varying Delay Via Intermediate Polynomial-Based Functions
,”
Automatica
,
113
, p.
108756
.10.1016/j.automatica.2019.108756
11.
Park
,
M. J.
,
Kwon
,
O. M.
, and
Ryu
,
J. H.
,
2018
, “
Advanced Stability Criteria for Linear Systems With Time-Varying Delays
,”
J. Franklin Inst.
,
355
(
1
), pp.
520
543
.10.1016/j.jfranklin.2017.11.029
12.
Kwon
,
O. M.
,
Lee
,
S. H.
,
Park
,
M. J.
, and
Lee
,
S. M.
,
2020
, “
Augmented Zero Equality Approach to Stability for Linear Systems With Time-Varying Delay
,”
Appl. Math. Comput.
,
381
, p.
125329
.10.1016/j.amc.2020.125329
13.
Wang
,
H.
,
Liu
,
S.
, and
Yang
,
X.
,
2020
, “
Adaptive Neural Control for Non-Strict-Feedback Nonlinear Systems With Input Delay
,”
Inf. Sci.
,
514
, pp.
605
616
.10.1016/j.ins.2019.09.043
14.
Lin
,
X.
,
Zhang
,
W.
,
Huang
,
S.
, and
Zheng
,
E.
,
2020
, “
Finite-Time Stabilization of Input-Delay Switched Systems
,”
Appl. Math. Comput.
,
375
, p.
125062
.10.1016/j.amc.2020.125062
15.
Sakthivel
,
R.
,
Satheesh
,
T.
,
Harshavarthini
,
S.
, and
Almakhles
,
D. J.
,
2020
, “
Design of Resilient Reliable Control for Uncertain Periodic Piecewise Systems With Time-Varying Delay and Disturbances
,”
J. Franklin Inst.
,
357
(
17
), pp.
12326
12345
.10.1016/j.jfranklin.2020.09.017
16.
Xie
,
X.
,
Lam
,
J.
, and
Li
,
P.
,
2018
, “
H Control Problem of Linear Periodic Piecewise Time-Delay Systems
,”
Int. J. Syst. Sci.
,
49
(
5
), pp.
997
1011
.10.1080/00207721.2018.1440028
17.
Zhang
,
K.
,
Jiang
,
B.
,
Shi
,
P.
, and
Pan
,
J. S.
,
2019
, “
Distributed Fault Estimation Design of Interconnected Systems With External Disturbances
,”
IET Control Theory Appl.
,
13
(
3
), pp.
377
386
.10.1049/iet-cta.2018.5754
18.
Han
,
X.
, and
Ma
,
Y.
,
2020
, “
Passivity Analysis for Singular Systems With Randomly Occurring Uncertainties Via the Event-Based Sliding Mode Control
,”
Comput. Appl. Math.
,
39
(
2
), pp.
1
21
.10.1007/s40314-020-1086-z
19.
Thuan
,
M. V.
, and
Huong
,
D. C.
,
2018
, “
New Results on Exponential Stability and Passivity Analysis of Delayed Switched Systems With Nonlinear Perturbations
,”
Circuits Syst. Signal Process.
,
37
(
2
), pp.
569
592
.10.1007/s00034-017-0565-y
20.
Li
,
F.
,
Xu
,
S.
,
Shen
,
H.
, and
Ma
,
Q.
,
2020
, “
Passivity-Based Control for Hidden Markov Jump Systems With Singular Perturbations and Partially Unknown Probabilities
,”
IEEE Trans. Autom. Control
,
65
(
8
), pp.
3701
3706
.10.1109/TAC.2019.2953461
21.
Xie
,
X.
,
Lam
,
J.
,
Fan
,
C.
,
Wang
,
X.
, and
Kwok
,
K. W.
,
2022
, “
Energy-to-Peak Output Tracking Control of Actuator Saturated Periodic Piecewise Time-Varying Systems With Nonlinear Perturbations
,”
IEEE Trans. Syst. Man Cybern.: Syst.
,
52
(
4
), pp.
2578
2590
.10.1109/TSMC.2021.3049524
22.
Li
,
P.
,
Lam
,
J.
, and
Cheung
,
K. C.
,
2017
, “
H Control of Periodic Piecewise Vibration Systems With Actuator Saturation
,”
J. Vib. Control
,
23
(
20
), pp.
3377
3391
.10.1177/1077546316629598
23.
Liang
,
X.
,
Xia
,
J.
,
Zhang
,
H.
,
Shen
,
H.
, and
Wang
,
Z.
,
2020
, “
Sampled-Data Control for Semi-Markovian Jump Systems With Actuator Saturation Via Fuzzy Model Approach
,”
IET Control Theory Appl.
,
14
(
14
), pp.
1888
1897
.10.1049/iet-cta.2020.0147
24.
Wang
,
Q.
,
Wu
,
Z.
,
Shi
,
P.
, and
Xue
,
A.
,
2017
, “
Robust Control for Switched Systems Subject to Input Saturation and Parametric Uncertainties
,”
J. Franklin Inst.
,
354
(
16
), pp.
7266
7279
.10.1016/j.jfranklin.2017.08.041
25.
Lamrabet
,
O.
,
Naamane
,
K.
,
Tissir
,
E. H.
,
El Haoussi
,
F.
, and
Tadeo
,
F.
,
2020
, “
An Input-Output Approach to Anti-Windup Design for Sampled-Data Systems With Time-Varying Delay
,”
Circuits Syst. Signal Process.
,
39
(
10
), pp.
4868
4889
.10.1007/s00034-020-01414-w
26.
Naamane
,
K.
, and
Tissir
,
E. H.
,
2022
, “
Robust Anti-Windup Controller Design for Takagi-Sugeno Fuzzy Systems With Time-Varying Delays and Actuator Saturation
,”
Circuits Syst. Signal Process.
,
41
(
3
), pp.
1426
1452
.10.1007/s00034-021-01849-9
27.
Li
,
T.
,
Wang
,
T.
,
Yu
,
Y.
, and
Fei
,
S.
,
2020
, “
Static Anti-Windup Compensator for Nonlinear Systems With Both State and Input Time-Varying Delays
,”
J. Franklin Inst.
,
357
(
2
), pp.
863
886
.10.1016/j.jfranklin.2019.10.009
28.
Hussain
,
M.
,
Rehan
,
M.
,
Ahn
,
C. K.
, and
Zheng
,
Z.
,
2019
, “
Static Anti-Windup Compensator Design for Nonlinear Time-Delay Systems Subjected to Input Saturation
,”
Nonlinear Dyn.
,
95
(
3
), pp.
1879
1901
.10.1007/s11071-018-4666-3
29.
Obaiah
,
M. C.
, and
Subudhi
,
B.
,
2019
, “
A Delay-Dependent Anti-Windup Compensator for Wide-Area Power Systems With Time-Varying Delays and Actuator Saturation
,”
IEEE/CAA J. Autom. Sin.
,
7
(
1
), pp.
1
12
.10.1109/JAS.2019.1911558
30.
Lamrabet
,
O.
,
Tissir
,
E. H.
, and
El Haoussi
,
F.
,
2019
, “
Anti-Windup Compensator Synthesis for Sampled-Data Delay Systems
,”
Circuits Syst. Signal Process.
,
38
(
5
), pp.
2055
2071
.10.1007/s00034-018-0971-9
You do not currently have access to this content.