Abstract

The fixed-point stopping of high-speed trains in stations is generally accomplished through manual operation in China. This situation often leads to a failure to stop at fixed-point signs and causes a fluctuation in the longitudinal acceleration due to the lack of experience of the drivers. To achieve precise, stable, and automatic stopping, a distributed multiparticle precise stopping control model based on the distributed model predictive control (MPC) algorithm is developed in this paper. A two-level hierarchical control structure for the subcontroller of each vehicle is adopted to bring itself to a controlled stop. In the upper control of subcontroller, the MPC algorithm is designed in turn based on the multiparticle mechanism model of the train. In the lower control of subcontroller, the target input from the upper control is converted and distributed. The controlled object, a comprehensive numerical computing model including the spatial dynamic model of the train and its electropneumatic blending braking model, is established and controlled by the corresponding subcontroller and employed to verify the performance of the controller. The influence of the model control parameters on the stopping performance is discussed, and the optimal combination of control parameters is selected. The proposed control model using the optimization parameters is tested and verified through the comprehensive numerical computing model. The results indicate that the stopping error is 0.0075 m, which is much less than the accuracy requirements for fixed-point stopping. The computing time of each subcontroller in real-time is stable at 0.09 s. The coupler impact force between two adjacent vehicles can also be effectively inhibited and eliminated. Its control performance outperforms a proportional–integral–derivative (PID) algorithm. The proposed precise stopping model and comprehensive numerical computing model provide references for the application and algorithm optimization of automatic train operation technology in high-speed trains.

References

1.
Yin
,
J.
,
Tang
,
T.
,
Yang
,
L.
,
Xun
,
J.
,
Huang
,
Y.
, and
Gao
,
Z.
,
2017
, “
Research and Development of Automatic Train Operation for Railway Transportation Systems: A Survey
,”
Transp. Res. Part C: Emerging Technol.
,
85
, pp.
548
572
.10.1016/j.trc.2017.09.009
2.
Wu
,
M.
,
Chen
,
C.
,
Tian
,
C.
, and
Zhou
,
J.
,
2020
, “
Precise Train Stopping Algorithm Based on Deceleration Control
,” Proceedings of the 2020 IEEE 5th International Conference on Intelligent Transportation Engineering (
ICITE
), Beijing, China, Sept. 11–13, pp.
281
284
.10.1109/ICITE50838.2020.9231468
3.
Nakazawa
,
S.
,
2021
, “
Accuracy Improvement of Braking Distance by Deceleration Feedback Function Applying to Brake System
,”
QR RTRI
,
62
(
3
), pp.
167
172
.10.2219/rtriqr.62.3_167
4.
Liu
,
D.
,
Xu
,
Y.
,
Zhu
,
S.
,
Liu
,
K.
, and
Qiao
,
G.
,
2017
, “
Decentralized Model Predictive Control for Automatic Train Operation System
,” Proceedings of the 2017 IEEE International Conference on Information and Automation (
ICIA
), Macao, China, July 18–20, pp.
428
433
.10.1109/ICInfA.2017.8078946
5.
Nankyo
,
M.
,
Ishihara
,
T.
, and
Inooka
,
H.
,
2006
, “
Feedback Control of Braking Deceleration on Railway Vehicle
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
2
), pp.
244
250
.10.1115/1.2192825
6.
Zuo
,
J.
, and
Lu
,
Y.
,
2011
, “
Simulation on Pneumatic Brake Control of Train Based on Deceleration Feedback
,”
Proceedings of the 2011 Fourth International Conference on Intelligent Computation Technology and Automation
, Shenzhen, China, Mar. 28–29, pp.
928
931
.10.1109/ICICTA.2011.233
7.
Wu
,
M.
, and
Luo
,
Z.
,
2015
, “
Study on Train Braking Deceleration Feedback Control Based on Adaptive Parameter Estimation
,”
J. China Railw. Soc.
,
37
(
8
), pp.
8
16
.10.3969/j.issn.1001-8360.2015.08.002
8.
Zhang
,
M.
, and
Xu
,
H.
,
2015
, “
Design of Urban Rail Vehicle Brake Controller Based on Krasovskii Functionals
,”
J. Jilin Univ., Eng. Technol. Ed.
,
45
(
1
), pp.
104
111
.10.13229/j.cnki.jdxbgxb201501016
9.
Wang
,
Q.
,
Wu
,
P.
,
Feng
,
X.
, and
Zhang
,
Y.
,
2016
, “
Precise Automatic Train Stop Control Algorithm Based on Adaptive Terminal Sliding Mode Control
,”
J. China Railw. Soc.
,
38
(
2
), pp.
56
63
.10.3969/j.issn.1001-8360.2016.02.008
10.
Zhang
,
R.
,
Peng
,
J.
,
Zhou
,
F.
,
Chen
,
B.
,
Liu
,
W.
, and
Huang
,
Z.
,
2019
, “
Adaptive Precision Automatic Train Stop Control Based on Pneumatic Brake Systems
,”
Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society
, Lisbon, Portugal, Oct. 14–17, pp.
273
278
.10.1109/IECON.2019.8927061
11.
He
,
J.
,
Yang
,
B.
,
Zhang
,
C.
,
Liu
,
J.
,
Mao
,
S.
,
Shi
,
L.
, and
Cheng
,
X.
,
2019
, “
Robust Consensus Braking Algorithm for Distributed EMUs With Uncertainties
,”
IET Control Theory Appl.
,
13
(
17
), pp.
2766
2774
.10.1049/iet-cta.2018.6107
12.
Wang
,
Y.
,
Hou
,
Z.
, and
Li
,
X.
,
2008
, “
A Novel Automatic Train Operation Algorithm Based on Iterative Learning Control Theory
,”
Proceedings of the 2008 IEEE International Conference on Service Operations and Logistics, and Informatics
, Beijing, China, Oct. 12–15, pp.
1766
1770
.10.1109/SOLI.2008.4682815
13.
Li
,
W.
,
Xian
,
K.
,
Yin
,
J.
, and
Chen
,
D.
,
2019
, “
Developing Train Station Parking Algorithms: New Frameworks Based on Fuzzy Reinforcement Learning
,”
J. Adv. Transp.
,
2019
(
1
), pp.
1
9
.10.1155/2019/3072495
14.
He
,
G.
,
2009
, “
Research on Train Precision Stop Control Algorithm Based on LQR
,” Master dissertation,
Beijing Jiaotong University
, Beijing, China.
15.
Dong
,
H.
,
Liu
,
Y.
,
Li
,
X.
, and
Yan
,
J.
,
2013
, “
Study on High-Speed Train ATP Based on Fuzzy Neural Network Predictive Control
,”
J. China Railw. Soc.
,
35
(
8
), pp.
58
62
.10.3969/j.issn.1001-8360.2013.08.009
16.
Zhu
,
L.
,
He
,
Y.
,
Yu
,
F. R.
,
Ning
,
B.
,
Tang
,
T.
, and
Zhao
,
N.
,
2017
, “
Communication-Based Train Control System Performance Optimization Using Deep Reinforcement Learning
,”
IEEE Trans. Veh. Technol.
,
66
(
12
), pp.
10705
10717
.10.1109/TVT.2017.2724060
17.
Xi
,
Y.
,
2013
,
Predictive Control
, 2nd ed.,
National Defense Industry Press
,
Beijing, China
.
18.
Chen
,
H.
,
2013
,
Model Predictive Control
,
Science Press
,
Beijing, China
.
19.
Maeder
,
U.
, and
Morari
,
M.
,
2010
, “
Offset-Free Reference Tracking With Model Predictive Control
,”
Automatica
,
46
(
9
), pp.
1469
1476
.10.1016/j.automatica.2010.05.023
20.
Liu
,
X.
,
Xun
,
J.
,
Ning
,
B.
, and
Yuan
,
L.
,
2019
, “
An Approach for Accurate Stopping of High-Speed Train by Using Model Predictive Control
,” Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (
ITSC
), Auckland, New Zealand, Oct. 27–30, pp.
846
851
.10.1109/ITSC.2019.8917237
21.
Dong
,
H.
,
Ning
,
B.
,
Cai
,
B.
, and
Hou
,
Z.
,
2010
, “
Automatic Train Control System Development and Simulation for High-Speed Railways
,”
IEEE Circuits Syst. Mag.
,
10
(
2
), pp.
6
18
.10.1109/MCAS.2010.936782
22.
Li
,
Z.
,
Yang
,
H.
,
Zhang
,
K.
, and
Fu
,
Y.
,
2014
, “
Distributed Model Predictive Control Based on Multi-Agent Model for Electric Multiple Units
,”
Acta Autom. Sin.
,
40
(
11
), pp.
2625
2631
.10.1016/S1874-1029(14)60409-2
23.
Shi
,
Y.
, and
Zhang
,
K.
,
2021
, “
Advanced Model Predictive Control Framework for Autonomous Intelligent Mechatronic Systems: A Tutorial Overview and Perspectives
,”
Annu. Rev. Control
,
52
, pp.
170
196
.10.1016/j.arcontrol.2021.10.008
24.
Zhao
,
W.
,
Ding
,
J.
,
Zhang
,
Q.
, and
Liu
,
W.
,
2022
, “
Investigation Into the Braking Performance of High-Speed Trains in the Complex Braking Environment of the Sichuan-Tibet Railway
,”
Proc. Inst. Mech. Eng., Part F
,
236
(
7
), pp.
766
782
.10.1177/09544097211041884
25.
Ling
,
L.
, and
Jin
,
X.
,
2014
, “
A 3D Model for Coupling Dynamics Analysis of High-Speed Train/Track System
,”
J. Zhejiang Univ., Sci., A
,
15
, pp.
964
983
.10.1631/jzus.A1400192
26.
Zhang
,
S.
,
2008
,
CRH5 EMU
, 1st ed.,
China Railway Press
,
Beijing, China
.
27.
Zhou
,
J.
,
Wu
,
M.
,
Liu
,
Y.
, and
Tian
,
C.
,
2020
, “
Train Braking Deceleration Control Based on Improved Smith Estimator
,”
J. Tongji Univ. Sci.
,
48
(
11
), pp.
1657
1667
.10.11908/j.issn.0253-374x.20151
28.
Liu
,
X.
,
Xun
,
J.
,
Ning
,
B.
, and
Wang
,
C.
,
2021
, “
Braking Process Identification of High-Speed Trains for Automatic Train Stop Control
,”
ISA Trans.
,
111
, pp.
171
179
.10.1016/j.isatra.2020.10.059
29.
Zhao
,
Y.
,
Wang
,
T.
, and
Karimi
,
H. R.
,
2017
, “
Distributed Cruise Control of High-Speed Trains
,”
J. Franklin Inst.
,
354
(
14
), pp.
6044
6061
.10.1016/j.jfranklin.2017.07.004
30.
Gong
,
J.
,
Jiang
,
Y.
, and
Xu
,
W.
,
2014
,
Model Predictive Control for Self-Driving Vehicles
, 1st ed.,
Beijing Institute of Technology Press
,
Beijing, China
.
31.
Maciejowski
,
J.
,
2002
,
Predictive Control With Constraints
,
Pearson Education Limited
,
London
.
32.
Zuo
,
J.
,
Wang
,
Z.
, and
Wu
,
M.
,
2013
, “
Simulation Model of Air Braking System for Subway Train
,”
J. Traffic Transp. Eng.
,
13
(
2
), pp.
42
47
.10.19818/j.cnki.1671-1637.2013.02.006
33.
Wei
,
W.
,
Hu
,
Y.
,
Wu
,
Q.
,
Zhao
,
X.
,
Zhang
,
J.
, and
Zhang
,
Y.
,
2017
, “
An Air Brake Model for Longitudinal Train Dynamics Studies
,”
Veh. Syst. Dyn.
,
55
(
4
), pp.
517
533
.10.1080/00423114.2016.1254261
34.
Polach
,
O.
,
2001
, “
Influence of Locomotive Tractive Effort on the Forces Between Wheel and Rail
,”
Veh. Syst. Dyn.
,
35
(
Suppl
.), pp.
7
22
.10.1076/vesd.35.1.1.5613
35.
Polach
,
O.
,
1999
, “
A Fast Wheel-Rail Forces Calculation Computer Code
,”
Veh. Syst. Dyn.
,
33
(
Suppl. 1
), pp.
728
739
.10.1080/00423114.1999.12063125
36.
Keviczky
,
T.
,
Francesco
,
B.
, and
Gary
,
J.
,
2006
, “
Decentralized Receding Horizon Control for Large Scale Dynamically Decoupled Systems
,”
Automatica
,
42
(
12
), pp.
2105
2115
.10.1016/j.automatica.2006.07.008
37.
Li
,
S.
, and
Cai
,
W.
,
2010
,
Industrial Process Identification and Control
, 1st ed.,
Chemical Industry Press
,
Beijing, China
.
38.
Rao
,
Z.
,
2016
,
Train Braking
, 2nd ed.,
China Railway Press
,
Beijing, China
.
39.
SAMR, and SAC,
2019
,
GB 5599-2019: Specification for Dynamic Performance Assessment and Testing Verification of Rolling Stock
, State Administration for Market Regulation ,and Standardization Administration of the People's Republic of China,
Standards Press of China
,
Beijing, China.
https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=FDCDB3ECBAFBCC8B39CD35A739AB67F2
You do not currently have access to this content.