Abstract

The selection of component parameters plays an important role in the energy optimization of dual-motor drive electric buses (DMDEBs). To design a set of parameters that can be robust to different road slopes, passenger masses, and bus routes, a Taguchi-based robust design optimization method is proposed in this paper for DMDEBs. First, the dynamic programming (DP) is designed as a part of the Taguchi method to explore the optimal solution (electricity consumption) corresponding to each set of component parameters. Then, by taking the optimal electricity consumption obtained by DP as the response, the Taguchi method is utilized to find the robust component parameters that are insensitive to the noise factors. To evaluate the robustness and reliability of the designed component parameters, a six sigma analysis based on Monte Carlo sampling is employed considering three kinds of stochastic disturbances. Finally, simulation results demonstrate that the proposed robust design optimization method is effective and the designed component parameters have better robustness than the initial component parameters.

References

1.
Chen
,
L.
,
Qian
,
K.
,
Qin
,
M.
,
Xu
,
X.
, and
Xia
,
Y.
,
2020
, “
A Configuration-Control Integrated Strategy for Electric Bus Charging Station With Echelon Battery System
,”
IEEE Trans. Ind. Appl.
,
56
(
5
), pp.
6019
6028
.10.1109/TIA.2020.2994185
2.
Alwesabi
,
Y.
,
Liu
,
Z.
,
Kwon
,
S.
, and
Wang
,
Y.
,
2021
, “
A Novel Integration of Scheduling and Dynamic Wireless Charging Planning Models of Battery Electric Buses
,”
Energy
,
230
, p.
120806
.10.1016/j.energy.2021.120806
3.
Gao
,
B.
,
Xiang
,
Y.
,
Chen
,
H.
,
Liang
,
Q.
, and
Guo
,
L.
,
2015
, “
Optimal Trajectory Planning of Motor Torque and Clutch Slip Speed for Gear Shift of a Two-Speed Electric Vehicle
,”
ASME J. Dyn. Syst., Meas., Control
,
137
(
6
), p.
061016
.10.1115/1.4029469
4.
Huang
,
Y.
,
Wang
,
H.
,
Khajepour
,
A.
,
Li
,
B.
,
Ji
,
J.
,
Zhao
,
K.
, and
Hu
,
C.
,
2018
, “
A Review of Power Management Strategies and Component Sizing Methods for Hybrid Vehicles
,”
Renewable Sustainable Energy Rev.
,
96
, pp.
132
144
.10.1016/j.rser.2018.07.020
5.
Hu
,
X.
,
Han
,
J.
,
Tang
,
X.
, and
Lin
,
X.
,
2021
, “
Powertrain Design and Control in Electrified Vehicles: A Critical Review
,”
IEEE Trans. Transport. Electrification
,
7
(
3
), pp.
1990
2009
.10.1109/TTE.2021.3056432
6.
Liu
,
W.
,
He
,
H.
,
Sun
,
F.
, and
Lv
,
J.
,
2017
, “
Integrated Chassis Control for a Three-Axle Electric Bus With Distributed Driving Motors and Active Rear Steering System
,”
Veh. Syst. Dyn.
,
55
(
5
), pp.
601
625
.10.1080/00423114.2016.1267368
7.
Wang
,
W.
,
Zhang
,
W.
, and
Zhao
,
Y.
,
2020
, “
Integrated Stability Control Strategy of in-Wheel Motor Driven Electric Bus
,”
Int. J. Automot. Technol.
,
21
(
4
), pp.
919
929
.10.1007/s12239-020-0088-6
8.
Zhang
,
L.
,
Wang
,
Y.
, and
Wang
,
Z.
,
2019
, “
Robust Lateral Motion Control for in-Wheel-Motor-Drive Electric Vehicles With Network Induced Delays
,”
IEEE Trans. Veh. Technol.
,
68
(
11
), pp.
10585
10593
.10.1109/TVT.2019.2942628
9.
Song
,
Z.
,
Hofmann
,
H.
,
Li
,
J.
,
Wang
,
Y.
,
Lu
,
D.
,
Ouyang
,
M.
, and
Du
,
J.
,
2020
, “
Torque Distribution Strategy for Multi-PMSM Applications and Optimal Acceleration Control for Four-Wheel-Drive Electric Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
142
(
2
), p.
021001
.10.1115/1.4045321
10.
Wu
,
J.
,
Liang
,
J.
,
Ruan
,
J.
,
Zhang
,
N.
, and
Walker
,
P. D.
,
2018
, “
Efficiency Comparison of Electric Vehicles Powertrains With Dual Motor and Single Motor Input
,”
Mech. Mach. Theory
,
128
, pp.
569
585
.10.1016/j.mechmachtheory.2018.07.003
11.
Wang
,
X.
,
Li
,
L.
,
He
,
K.
,
Liu
,
Y.
, and
Liu
,
C.
,
2018
, “
Position and Force Switching Control for Gear Engagement of Automated Manual Transmission Gear-Shift Process
,”
ASME J. Dyn. Syst. Meas. Control
,
140
(
8
), p.
081010
.10.1115/1.4039184
12.
Ahssan
,
M. R.
,
Ektesabi
,
M.
, and
Gorji
,
S.
,
2020
, “
Gear Ratio Optimization Along With a Novel Gearshift Scheduling Strategy for a Two-Speed Transmission System in Electric Vehicle
,”
Energies
,
13
(
19
), p.
5073
.10.3390/en13195073
13.
Nguyen
,
C. T.
,
Walker
,
P. D.
,
Zhou
,
S.
, and
Zhang
,
N.
,
2022
, “
Optimal Sizing and Energy Management of an Electric Vehicle Powertrain Equipped With Two Motors and Multi-Gear Ratios
,”
Mech. Mach. Theory
,
167
, p.
104513
.10.1016/j.mechmachtheory.2021.104513
14.
Zhao
,
M.
,
Shi
,
J.
, and
Lin
,
C.
,
2019
, “
Optimization of Integrated Energy Management for a Dual-Motor Coaxial Coupling Propulsion Electric City Bus
,”
Appl. Energy
,
243
, pp.
21
34
.10.1016/j.apenergy.2019.03.195
15.
Shin
,
J.
,
Kim
,
H.
,
Baek
,
S.
,
Sunwoo
,
M.
, and
Han
,
M.
,
2019
, “
Rule-Based Alternator Control Using Predicted Velocity for Energy Management Strategy
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
12
), p.
121005
.10.1115/1.4044616
16.
Hu
,
J.
,
Niu
,
X.
,
Jiang
,
X.
, and
Zu
,
G.
,
2019
, “
Energy Management Strategy Based on Driving Pattern Recognition for a Dual-Motor Battery Electric Vehicle
,”
Int. J. Energy Res.
,
43
(
8
), pp.
3346
3364
.10.1002/er.4474
17.
Mallon
,
K. R.
, and
Assadian
,
F.
,
2021
, “
Robustification Through Minimax Dynamic Programing and Its Implication for Hybrid Vehicle Energy Management Strategies
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
9
), p.
091001
.10.1115/1.4050252
18.
Li
,
X.
,
Wang
,
Y.
,
Yang
,
D.
, and
Chen
,
Z.
,
2019
, “
Adaptive Energy Management Strategy for Fuel Cell/Battery Hybrid Vehicles Using Pontryagin's Minimal Principle
,”
J. Power Sources
,
440
, p.
227105
.10.1016/j.jpowsour.2019.227105
19.
Wang
,
Y.
,
Wang
,
X.
,
Sun
,
Y.
, and
You
,
S.
,
2018
, “
Model Predictive Control Strategy for Energy Optimization of Series-Parallel Hybrid Electric Vehicle
,”
J. Cleaner Prod.
,
199
, pp.
348
358
.10.1016/j.jclepro.2018.07.191
20.
Liu
,
C.
,
Li
,
L.
,
Yong
,
J.
,
Muhammad
,
F.
,
Cheng
,
S.
,
Wang
,
X.
, and
Li
,
W.
,
2021
, “
The Bionics and Its Application in Energy Management Strategy of Plug-in Hybrid Electric Vehicle Formation
,”
IEEE Trans. Intell. Transport. Syst.
,
22
(
12
), pp.
7860
7874
.10.1109/TITS.2020.3017571
21.
Asher
,
Z. D.
,
Trinko
,
D. A.
,
Payne
,
J. D.
,
Geller
,
B. M.
, and
Bradley
,
T. H.
,
2020
, “
Real-Time Implementation of Optimal Energy Management in Hybrid Electric Vehicles: Globally Optimal Control of Acceleration Events
,”
ASME J. Dyn. Syst. Meas. Control
,,
142
(
8
), p.
081002
.10.1115/1.4046477
22.
Fang
,
L.
,
Qin
,
S.
,
Xu
,
G.
,
Li
,
T.
, and
Zhu
,
K.
,
2011
, “
Simultaneous Optimization for Hybrid Electric Vehicle Parameters Based on Multi-Objective Genetic Algorithms
,”
Energies
,
4
(
3
), pp.
532
544
.10.3390/en4030532
23.
Zhou
,
X.
,
Qin
,
D.
, and
Hu
,
J.
,
2017
, “
Multi-Objective Optimization Design and Performance Evaluation for Plug-IN Hybrid Electric Vehicle Powertrains
,”
Appl. Energy
,
208
, pp.
1608
1625
.10.1016/j.apenergy.2017.08.201
24.
Zhang
,
S.
,
Xiong
,
R.
,
Zhang
,
C.
, and
Sun
,
F.
,
2016
, “
An Optimal Structure Selection and Parameter Design Approach for a Dual-Motor-Driven System Used in an Electric Bus
,”
Energy
,
96
, pp.
437
448
.10.1016/j.energy.2015.12.089
25.
Hu
,
X.
,
Li
,
Y.
,
Lv
,
C.
, and
Liu
,
Y.
,
2019
, “
Optimal Energy Management and Sizing of a Dual Motor-Driven Electric Powertrain
,”
IEEE Trans. Power Electron.
,
34
(
8
), pp.
7489
7501
.10.1109/TPEL.2018.2879225
26.
Kwon
,
K.
,
Seo
,
M.
, and
Min
,
S.
,
2020
, “
Efficient Multi-Objective Optimization of Gear Ratios and Motor Torque Distribution for Electric Vehicles With Two-Motor and Two-Speed Powertrain System
,”
Appl. Energy
,
259
, p.
114190
.10.1016/j.apenergy.2019.114190
27.
Lv
,
C.
,
Hu
,
X.
,
Sangiovanni-Vincentelli
,
A.
,
Li
,
Y.
,
Martinez
,
C. M.
, and
Cao
,
D.
,
2019
, “
Driving-Style-Based Codesign Optimization of an Automated Electric Vehicle: A Cyber-Physical System Approach
,”
IEEE Trans. Ind. Electron.
,
66
(
4
), pp.
2965
2975
.10.1109/TIE.2018.2850031
28.
Shangguan
,
J.
,
Guo
,
H.
, and
Yue
,
M.
,
2020
, “
Robust Energy Management of Plug-in Hybrid Electric Bus Considering the Uncertainties of Driving Cycles and Vehicle Mass
,”
Energy
,
203
, p.
117836
.10.1016/j.energy.2020.117836
29.
Shi
,
Z.
,
Sun
,
X.
,
Cai
,
Y.
, and
Yang
,
Z.
,
2020
, “
Robust Design Optimization of a Five-Phase pm Hub Motor for Fault-Tolerant Operation Based on Taguchi Method
,”
IEEE Trans. Energy Convers.
,
35
(
4
), pp.
2036
2044
.10.1109/TEC.2020.2989438
30.
Jiang
,
L.
,
Li
,
Y.
,
Huang
,
Y.
,
Yu
,
J.
,
Qiao
,
X.
,
Wang
,
Y.
,
Huang
,
C.
, and
Cao
,
Y.
,
2020
, “
Optimization of Multi-Stage Constant Current Charging Pattern Based on Taguchi Method for Li-Ion Battery
,”
Appl. Energy
,
259
, p.
114148
.10.1016/j.apenergy.2019.114148
31.
Guo
,
H.
,
Wang
,
X.
, and
Li
,
L.
,
2019
, “
State-of-Charge-Constraint-Based Energy Management Strategy of Plug-In Hybrid Electric Vehicle With Bus Route
,”
Energy Convers. Manage.
,
199
, p.
111972
.10.1016/j.enconman.2019.111972
32.
Liu
,
C.
,
Zhu
,
Q.
,
Li
,
L.
,
Liu
,
W.
,
Wang
,
L.
,
Xiong
,
N.
, and
Wang
,
X.
,
2017
, “
A State of Charge Estimation Method Based on H Observer for Switched Systems of Lithium-Ion Nickel-Manganese-Cobalt Batteries
,”
IEEE Trans. Ind. Electron.
,
64
(
10
), pp.
8128
8137
.10.1109/TIE.2017.2701766
33.
Yan
,
S.
, and
Sun
,
W.
,
2017
, “
Self-Powered Suspension Criterion and Energy Regeneration Implementation Scheme of Motor-Driven Active Suspension
,”
Mech. Syst. Signal Process.
,
94
, pp.
297
311
.10.1016/j.ymssp.2017.03.006
34.
Hou
,
D.
,
Sun
,
Q.
,
Bao
,
C.
,
Cheng
,
X.
,
Guo
,
H.
, and
Zhao
,
Y.
,
2019
, “
An All-In-One Design Method for Plug-In Hybrid Electric Buses Considering Uncertain Factor of Driving Cycles
,”
Appl. Energy
,
253
, p.
113499
.10.1016/j.apenergy.2019.113499
35.
Lei
,
G.
,
Wang
,
T.
,
Zhu
,
J.
,
Guo
,
Y.
, and
Wang
,
S.
,
2015
, “
System-Level Design Optimization Method for Electrical Drive systems-Robust Approach
,”
IEEE Trans. Ind. Electron.
,
62
(
8
), pp.
4702
4713
.10.1109/TIE.2015.2404305
36.
Wang
,
Y.
,
Zhu
,
G. G.
, and
Mukherjee
,
R.
,
2021
, “
Performance Improvement Demonstration of an NMP System Using Sample and Hold Inputs
,”
Int. J. Dyn. Control
,
9
(
1
), pp.
109
120
.10.1007/s40435-020-00643-w
37.
Saliby
,
E.
,
1990
, “
Descriptive Sampling: A Better Approach to Monte Carlo Simulation
,”
J. Oper. Res. Soc.
,
41
(
12
), pp.
1133
1142
.10.1057/jors.1990.180
38.
Kalia
,
A. V.
, and
Fabien
,
B. C.
,
2021
, “
Comparison of Model Predictive Control and Distance Constrained-Adaptive Concurrent Dynamic Programming Algorithms for Extended Range Electric Vehicle Optimal Energy Management
,”
ASME J. Dyn. Syst., Meas., Control
,
143
(
9
), p.
094504
.10.1115/1.4050884
You do not currently have access to this content.