Abstract

Tactile sensors are essential to robot hands that deal with various objects and interact with the environment. Soft tactile sensors are especially important to capture tactile information about delicate, irregular-shaped, or unknown objects. This paper introduces a soft tactile sensor that can simultaneously estimate the contact force, contact feature, and contact point. Inspired by multifunctional human skin, the proposed design has a dual-layer structure and is multifunctional. The top layer consists of a group of sensing elements that detect the contact location and contact feature enhanced by the bagging classifier based on the k-nearest neighbors. The sensor elements were biomimetically and analytically designed as a pyramid shape that mimicked the mountain ridge-like structure in human skin to improve sensitivity. The bottom layer was made by a piece of Velostat sandwiched between conductive fabrics that can measure the contact force. The relationship between the sensing voltage and the contact force was modeled by the Nadaraya–Watson regressor. The performance of the proposed sensor was verified by a repeatability test. Furthermore, we demonstrated the effectiveness of the proposed sensor on a robotic gripper. The experimental results show that this sensor is able to detect contact information of fragile objects.

References

1.
Tawk
,
C.
,
Zhou
,
H.
,
Sariyildiz
,
E.
,
In Het Panhuis
,
M.
,
Spinks
,
G. M.
, and
Alici
,
G.
,
2021
, “
Design, Modeling, and Control of a 3D Printed Monolithic Soft Robotic Finger With Embedded Pneumatic Sensing Chambers
,”
IEEE/ASME Trans. Mechatronics
,
26
(
2
), pp.
876
887
.10.1109/TMECH.2020.3009365
2.
Gerboni
,
G.
,
Diodato
,
A.
,
Ciuti
,
G.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2017
, “
Feedback Control of Soft Robot Actuators Via Commercial Flex Bend Sensors
,”
IEEE/ASME Trans. Mechatronics
,
22
(
4
), pp.
1881
1888
.10.1109/TMECH.2017.2699677
3.
Khalil
,
F. F.
, and
Payeur
,
P.
,
2010
,
Dexterous Robotic Manipulation of Deformable Objects With Multi-Sensory Feedback-a Review
,
Intech
, London, UK.
4.
Hughes
,
J.
,
Culha
,
U.
,
Giardina
,
F.
,
Guenther
,
F.
,
Rosendo
,
A.
, and
Iida
,
F.
,
2016
, “
Soft Manipulators and Grippers: A Review
,”
Front. Rob. AI
,
3
, p.
69
.10.3389/frobt.2016.00069
5.
Dahiya
,
R. S.
,
Metta
,
G.
,
Valle
,
M.
, and
Sandini
,
G.
,
2010
, “
Tactile Sensing—From Humans to Humanoids
,”
IEEE Trans. Rob.
,
26
(
1
), pp.
1
20
.10.1109/TRO.2009.2033627
6.
Hammond
,
F. L.
,
Mengüç
,
Y.
, and
Wood
,
R. J.
,
2014
, “
Toward a Modular Soft Sensor-Embedded Glove for Human Hand Motion and Tactile Pressure Measurement
,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
, Chicago, IL, Sept. 14–18, pp.
4000
4007
.10.1109/IROS.2014.6943125
7.
Jockusch
,
J.
,
Walter
,
J.
, and
Ritter
,
H.
,
1997
, “
A Tactile Sensor System for a Three-Fingered Robot Manipulator
,”
Proceedings of International Conference on Robotics and Automation
,
IEEE
, Vol.
3084
, Albuquerque, NM, Apr. 24, pp.
3080
3086
.10.1109/ROBOT.1997.606756
8.
Ma
,
D.
,
Ceron
,
S.
,
Kaiser
,
G.
, and
Petersen
,
K.
,
2020
, “
Simple, Low-Cost Fabrication of Soft Sensors for Shape Reconstruction
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
4049
4054
.10.1109/LRA.2020.2986746
9.
Masaki
,
T.
,
Ando
,
M.
,
Takei
,
T.
,
Fujimoto
,
H.
, and
Mochiyama
,
H.
,
2019
, “
Surface Undulation Detection System Using Wearable Artificial Skin Layer With Strain Gauge
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), Seoul, South Korea, Apr. 14–18, pp.
617
622
.10.1109/ROBOSOFT.2019.8722760
10.
Shih
,
B.
,
Mayeda
,
J.
,
Huo
,
Z.
,
Christianson
,
C.
, and
Tolley
,
M. T.
,
2018
, “
3D Printed Resistive Soft Sensors
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
),
IEEE
, Livorno, Italy, Apr. 24–28, pp.
152
157
.10.1109/ROBOSOFT.2018.8404912
11.
Shimojo
,
M.
,
Namiki
,
A.
,
Ishikawa
,
M.
,
Makino
,
R.
, and
Mabuchi
,
K.
,
2004
, “
A Tactile Sensor Sheet Using Pressure Conductive Rubber With Electrical-Wires Stitched Method
,”
IEEE Sens. J.
,
4
(
5
), pp.
589
596
.10.1109/JSEN.2004.833152
12.
Totaro
,
M.
,
Bernardeschi
,
I.
,
Wang
,
H.
, and
Beccai
,
L.
,
2020
, “
Analysis and Optimization of Fully Foam-Based Capacitive Sensors
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
470
475
.10.1109/RoboSoft48309.2020.9116014
13.
Sonar
,
H. A.
,
Yuen
,
M. C.
,
Kramer-Bottiglio
,
R.
, and
Paik
,
J.
,
2018
, “
An Any-Resolution Pressure Localization Scheme Using a Soft Capacitive Sensor Skin
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), Livorno, Italy, Apr. 24–28, pp.
170
175
.10.1109/ROBOSOFT.2018.8404915
14.
Meuwissen
,
M.
,
Veninga
,
E.
,
Tijdink
,
M.
, and
Meijerink
,
M.
,
2006
, “
Design Study of a Capacitive Pressure Sensor in Non-Silicon Materials
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
220
(
11
), pp.
1633
1643
.10.1243/0954406JMES226
15.
Kim
,
S.
,
Sukjun
,
K.
,
Majditehran
,
H.
,
Patel
,
D. K.
,
Majidi
,
C.
, and
Bergbreiter
,
S.
,
2020
, “
Electromechanical Characterization of 3D Printable Conductive Elastomer for Soft Robotics
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
318
324
.10.1109/RoboSoft48309.2020.9116027
16.
Atalay
,
O.
,
Atalay
,
A.
,
Gafford
,
J.
, and
Walsh
,
C.
,
2018
, “
A Highly Sensitive Capacitive‐Based Soft Pressure Sensor Based on a Conductive Fabric and a Microporous Dielectric Layer
,”
Adv. Mater. Technol.
,
3
(
1
), p.
1700237
.10.1002/admt.201700237
17.
Mishra
,
R. B.
,
Khan
,
S. M.
,
Shaikh
,
S. F.
,
Hussain
,
A. M.
, and
Hussain
,
M. M.
,
2020
, “
Low-Cost Foil/Paper Based Touch Mode Pressure Sensing Element as Artificial Skin Module for Prosthetic Hand
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
194
200
.10.1109/RoboSoft48309.2020.9116035
18.
Agarwal
,
R.
, and
Bergbreiter
,
S.
,
2019
, “
Measurement of Shear Forces During Gripping Tasks With a Low-Cost Tactile Sensing System
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), Seoul, South Korea, Apr. 14–18, pp.
330
336
.10.1109/ROBOSOFT.2019.8722774
19.
Fang
,
B.
,
Chen
,
Y.
,
Sun
,
F.
,
Yang
,
D.
,
Zhang
,
X.
,
Xia
,
Z.
, and
Liu
,
H.
,
2020
, “
A Petal-Array Capacitive Tactile Sensor With Micro-Pin for Robotic Fingertip Sensing
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
452
457
.10.1109/RoboSoft48309.2020.9116047
20.
Barreiros
,
J.
,
Karakurt
,
I.
,
Agarwal
,
P.
,
Agcayazi
,
T.
,
Reese
,
S.
,
Healy
,
K.
, and
Menguc
,
Y.
,
2020
, “
Self-Sensing Elastomeric Membrane for Haptic Bubble Arrray
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
229
236
.10.1109/RoboSoft48309.2020.9116051
21.
Yoshigi
,
S.
,
Wang
,
J.
,
Nakayama
,
S.
, and
Ho
,
V. A.
,
2020
, “
Deep Learning-Based Whole-Arm Soft Tactile Sensation
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
132
137
.10.1109/RoboSoft48309.2020.9116018
22.
Ma
,
D.
,
Donlon
,
E.
,
Dong
,
S.
, and
Rodriguez
,
A.
,
2019
, “
Dense Tactile Force Estimation Using GelSlim and Inverse FEM
,” Proceedings of International Conference on Robotics and Automation (
ICRA
),
IEEE
, Montreal, QC, Canada, May 20–24, pp.
5418
5424
.10.1109/ICRA.2019.8794113
23.
Chorley
,
C.
,
Melhuish
,
C.
,
Pipe
,
T.
, and
Rossiter
,
J.
,
2019
, “
Development of a Tactile Sensor Based on Biologically Inspired Edge Encoding
,”
Proceedings of International Conference on Advanced Robotics (ICAR)
, Montreal, QC, Canada, May 20–24, pp.
1
6
.
24.
Trueeb
,
C.
,
Sferrazza
,
C.
, and
D'Andrea
,
R.
,
2020
, “
Towards Vision-Based Robotic Skins: A Data-Driven, Multi-Camera Tactile Sensor
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
333
338
.10.1109/RoboSoft48309.2020.9116060
25.
Ribeiro
,
P.
,
Cardoso
,
S.
,
Bernardino
,
A.
, and
Jamone
,
L.
,
2020
, “
Fruit Quality Control by Surface Analysis Using a Bio-Inspired Soft Tactile Sensor
,” Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Las Vegas, NV, Oct. 24–Jan. 24, pp.
8875
8881
.10.1109/IROS45743.2020.9340955
26.
Jamone
,
L.
,
Natale
,
L.
,
Metta
,
G.
, and
Sandini
,
G.
,
2015
, “
Highly Sensitive Soft Tactile Sensors for an Anthropomorphic Robotic Hand
,”
IEEE Sens. J.
,
15
(
8
), pp.
4226
4233
.10.1109/JSEN.2015.2417759
27.
Hellebrekers
,
T.
,
Kroemer
,
O.
, and
Majidi
,
C.
,
2019
, “
Soft Magnetic Skin for Continuous Deformation Sensing
,”
Adv. Intell. Syst.
,
1
(
4
), p.
1900025
.10.1002/aisy.201900025
28.
Yan
,
Y.
,
Hu
,
Z.
,
Yang
,
Z.
,
Yuan
,
W.
,
Song
,
C.
,
Pan
,
J.
, and
Shen
,
Y.
,
2021
, “
Soft Magnetic Skin for Super-Resolution Tactile Sensing With Force Self-Decoupling
,”
Sci. Rob.
,
6
(
51
).10.1126/scirobotics.abc880
29.
Hellebrekers
,
T.
,
Chang
,
N.
,
Chin
,
K.
,
Ford
,
M. J.
,
Kroemer
,
O.
, and
Majidi
,
C.
,
2020
, “
Soft Magnetic Tactile Skin for Continuous Force and Location Estimation Using Neural Networks
,”
IEEE Rob. Autom. Lett.
, 5(3), pp.
3892
3898
.10.1109/LRA.2020.2983707
30.
De Oliveira
,
T. E. A.
,
Cretu
,
A.-M.
, and
Petriu
,
E. M.
,
2017
, “
Multimodal Bio-Inspired Tactile Sensing Module
,”
IEEE Sens. J.
,
17
(
11
), pp.
3231
3243
.10.1109/JSEN.2017.2690898
31.
Drimus
,
A.
,
Kootstra
,
G.
,
Bilberg
,
A.
, and
Kragic
,
D.
,
2014
, “
Design of a Flexible Tactile Sensor for Classification of Rigid and Deformable Objects
,”
Rob. Auton. Syst.
,
62
(
1
), pp.
3
15
.10.1016/j.robot.2012.07.021
32.
Hughes
,
J.
,
Maiolino
,
P.
,
Nanayakkara
,
T.
, and
Iida
,
F.
,
2020
, “
Sensorized Phantom for Characterizing Large Area Deformation of Soft Bodies for Medical Applications
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
278
284
.10.1109/RoboSoft48309.2020.9115971
33.
Li
,
G.
,
Liu
,
S.
,
Wang
,
L.
, and
Zhu
,
R.
,
2020
, “
Skin-Inspired Quadruple Tactile Sensors Integrated on a Robot Hand Enable Object Recognition
,”
Sci. Rob.
,
5
(
49
), p.
eabc8134
.10.1126/scirobotics.abc8134
34.
Nassour
,
J.
,
Ghadiya
,
V.
,
Hugel
,
V.
, and
Hamker
,
F. H.
,
2018
, “
Design of New Sensory Soft Hand: Combining Air-Pump Actuation With Superimposed Curvature and Pressure Sensors
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), Livorno, Italy, Apr. 24–28, pp.
164
169
.10.1109/ROBOSOFT.2018.8404914
35.
Youssefian
,
S.
,
Rahbar
,
N.
, and
Torres-Jara
,
E.
,
2014
, “
Contact Behavior of Soft Spherical Tactile Sensors
,”
IEEE Sens. J.
,
14
(
5
), pp.
1435
1442
.10.1109/JSEN.2013.2296208
36.
Gerling
,
G. J.
, and
Thomas
,
G. W.
,
2005
, “
The Effect of Fingertip Microstructures on Tactile Edge Perception
,”
Proceedings of First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference
,
IEEE
, Pisa, Italy, Mar. 18–20, pp.
63
72
.10.1109/WHC.2005.129
37.
Pang
,
Y.
,
Zhang
,
K.
,
Yang
,
Z.
,
Jiang
,
S.
,
Ju
,
Z.
,
Li
,
Y.
,
Wang
,
X.
,
Wang
,
D.
,
Jian
,
M.
,
Zhang
,
Y.
,
Liang
,
R.
,
Tian
,
H.
,
Yang
,
Y.
, and
Ren
,
T.-L.
,
2018
, “
Epidermis Microstructure Inspired Graphene Pressure Sensor With Random Distributed Spinosum for High Sensitivity and Large Linearity
,”
ACS Nano
,
12
(
3
), pp.
2346
2354
.10.1021/acsnano.7b07613
38.
Zhu
,
B.
,
Niu
,
Z.
,
Wang
,
H.
,
Leow
,
W. R.
,
Wang
,
H.
,
Li
,
Y.
,
Zheng
,
L.
,
Wei
,
J.
,
Huo
,
F.
, and
Chen
,
X.
,
2014
, “
Microstructured Graphene Arrays for Highly Sensitive Flexible Tactile Sensors
,”
Small
,
10
(
18
), pp.
3625
3631
.10.1002/smll.201401207
39.
Fischer-Cripps
,
A. C.
,
2007
,
Introduction to Contact Mechanics
,
Springer
, New York.
40.
Hibbeler
,
R. C.
,
2017
,
Mechanics of Materials
, 8th ed.,
Pearson
,
New York
, pp.
119
178
.
41.
Park
,
W.
,
Seo
,
S.
, and
Bae
,
J.
,
2019
, “
Development of a Sensorized Hybrid Gripper to Evaluate Grasping Quality
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), Seoul, South Korea, Apr. 14–18, pp.
149
154
.10.1109/ROBOSOFT.2019.8722753
42.
Thuruthel
,
T. G.
,
Gilday
,
K.
, and
Iida
,
F.
,
2020
, “
Drift-Free Latent Space Representation for Soft Strain Sensors
,” Proceedings of IEEE International Conference on Soft Robotics (
RoboSoft
), New Haven, CT, May 15–June 15, pp.
138
143
.10.1109/RoboSoft48309.2020.9116021
43.
Yahud
,
S.
,
Dokos
,
S.
,
Morley
,
J. W.
, and
Lovell
,
N. H.
,
2009
, “
Experimental Validation of a Tactile Sensor Model for a Robotic Hand
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology Society
, Minneapolis, MN, Sept. 3–6, pp.
2300
2303
.10.1109/IEMBS.2009.5335048
44.
Massari
,
L.
,
Schena
,
E.
,
Massaroni
,
C.
,
Saccomandi
,
P.
,
Menciassi
,
A.
,
Sinibaldi
,
E.
, and
Oddo
,
C. M.
,
2020
, “
A Machine-Learning-Based Approach to Solve Both Contact Location and Force in Soft Material Tactile Sensors
,”
Soft Rob.
,
7
(
4
), pp.
409
420
.10.1089/soro.2018.0172
45.
Thuruthel
,
T. G.
,
Shih
,
B.
,
Laschi
,
C.
, and
Tolley
,
M. T.
,
2019
, “
Soft Robot Perception Using Embedded Soft Sensors and Recurrent Neural Networks
,”
Sci. Rob.
,
4
(
26
).10.1126/scirobotics.aav1488
46.
Han
,
S.
,
Kim
,
T.
,
Kim
,
D.
,
Park
,
Y.-L.
, and
Jo
,
S.
,
2018
, “
Use of Deep Learning for Characterization of Microfluidic Soft Sensors
,”
IEEE Rob. Autom. Lett.
,
3
(
2
), pp.
873
880
.10.1109/LRA.2018.2792684
47.
Zhang
,
Q.
,
Xie
,
Z.
,
Liu
,
Y.
,
Zhao
,
X.
,
Gu
,
Y.
, and
Liu
,
H.
,
2021
, “
A Novel Approach for Flexible Manipulator Conducting Screwing Task Based on Robot–Environment Contact Classification
,”
Proc. Inst. Mech. Eng., Part C J. Mech. Eng. Sci.
,
235
(
8
), pp.
1357
1367
.10.1177/0954406219894025
48.
Jablonski
,
N. G.
,
2008
,
Skin: A Natural History
,
University of California Press
, Berkeley, CA, pp.
97
111
.
49.
Hertzberg
,
R. W.
,
Vinci
,
R. P.
, and
Hertzberg
,
J. L.
,
2020
,
Deformation and Fracture Mechanics of Engineering Materials
,
Wiley
, Hoboken, NJ, pp.
3
56
.
50.
Park
,
Y.-L.
,
Majidi
,
C.
,
Kramer
,
R.
,
Bérard
,
P.
, and
Wood
,
R. J.
,
2010
, “
Hyperelastic Pressure Sensing With a Liquid-Embedded Elastomer
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125029
.10.1088/0960-1317/20/12/125029
51.
Murray
,
R. M.
,
Li
,
Z.
, and
Sastry
,
S. S.
,
2017
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
, Boca Raton, FL, pp.
234
241
.
52.
Potdar
,
K.
, Pardawala, T. S., and Pai, C. D.,
2017
, “
A Comparative Study of Categorical Variable Encoding Techniques for Neural Network Classifiers
,”
Int. J. Comput. Appl.
,
175
(
4
), pp.
7
9
.10.5120/ijca2017915495
53.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning: With Applications in R
,
Springer
, New York.
54.
Breiman
,
L.
,
1996
, “
Bagging Predictors
,”
Mach. Learn.
,
24
(
2
), pp.
123
140
.10.1007/BF00058655
55.
Nadaraya
,
E. A.
,
1964
, “
On Estimating Regression
,”
Theory Probab. Appl.
,
9
(
1
), pp.
141
142
.10.1137/1109020
56.
Watson
,
G. S.
,
1964
, “
Smooth Regression Analysis
,”
Sankhyā: Indian J. Stat., Ser. A
, 26(4), pp.
359
372
.https://www.jstor.org/stable/25049340
57.
Forghani
,
M.
,
Huang
,
W.
, and
Jawed
,
M. K.
,
2021
, “
Control of Uniflagellar Soft Robots at Low Reynolds Number Using Buckling Instability
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
6
), p.
061004
.10.1115/1.4049548
58.
O-larnnithipong
,
N.
, and
Barreto
,
A.
,
2016
, “
Gyroscope Drift Correction Algorithm for Inertial Measurement Unit Used in Hand Motion Tracking
,”
Proceedings of IEEE Sensor Conference
, Orlando, FL, Oct. 30–Nov. 3, pp.
1
3
.10.1109/ICSENS.2016.7808525
59.
Yang
,
W.-T.
,
Chen
,
B.-H.
, and
Lin
,
P.-C.
,
2022
, “
A Dual-Arm Manipulation Strategy Using Position/Force Errors and Kalman Filter
,”
Trans. Inst. Meas. Control
,
44
(
4
), pp.
820
834
.10.1177/01423312211018681
You do not currently have access to this content.