Abstract

Hybrid zero dynamics (HZD) control creates dynamically stable gaits by driving a hybrid robot model toward an optimally generated state-dependent reference signal. This paper presents the first application of HZD to an underactuated lower-limb exoskeleton for gait guidance. A phase-based reference gait is generated to follow a nominal walking pattern. Simulation results using a phase-based proportional-derivative (PD) controller validate that stable periodic gait similar to nominal gait is possible for the identified human-exoskeleton model. For hardware application, a bilateral mixing strategy is taken to accommodate the presence of the double support phase, which was assumed to be instantaneous in the hybrid model. A treadmill experiment is conducted with a healthy subject using the Indego Explorer exoskeleton. Comparing the recorded gait to the optimal phase-based reference, the root-mean-square joint tracking errors (RMSE) are 2.87 deg, 2.79 deg, 3.20 deg, and 11.0 deg at the stance hip, stance knee, swing hip, and swing knee, respectively. Similarly, compared to the commanded reference, the RMSE are 2.04 deg, 4.40 deg, 4.58 deg, and 6.83 deg, respectively. A second experiment was conducted wherein the treadmill speed varied from 0.3 to 0.5 m/s. The results show how the HZD controller exhibits remarkable flexibility and robustness for multiple walking speeds and grants the operator greater level of volitional control due to the time-invariant, phase-based nature of the implementation. Taken altogether, the presented results suggest that HZD control can serve as a rehabilitative control method capable of providing gait guidance in underactuated exoskeleton systems.

References

1.
Studenski
,
S.
,
2011
, “
Gait Speed and Survival in Older Adults
,”
JAMA
,
305
(
1
), p.
50
.10.1001/jama.2010.1923
2.
Alexander
,
N. B.
,
1996
, “
Gait Disorders in Older Adults
,”
J. Am. Geriatr. Soc.
,
44
(
4
), pp.
434
451
.10.1111/j.1532-5415.1996.tb06417.x
3.
Karakaya
,
M. G.
,
Bilgin
,
S. Ç.
,
Ekici
,
G.
,
Köse
,
N.
, and
Otman
,
A. S.
,
2009
, “
Functional Mobility, Depressive Symptoms, Level of Independence, and Quality of Life of the Elderly Living at Home and in the Nursing Home
,”
J. Am. Med. Dir. Assoc.
,
10
(
9
), pp.
662
666
.10.1016/j.jamda.2009.06.002
4.
Vukobratović
,
M.
,
2006
, “
Humanoid Robotics – Past, Present State, Future
,”
Fourth SISY Serbian-Hungarian Joint Symposium on Intelligent Systems
, Subotica, Serbia, Sept. 29–30, p.
19
.
5.
Vukobratović
,
M.
,
Hristic
,
D.
, and
Stojiljkovic
,
Z.
,
1974
, “
Development of Active Anthropomorphic Exoskeletons
,”
Med. Biol. Eng.
,
12
(
1
), pp.
66
80
.10.1007/BF02629836
6.
Seireg, A., and Grundmann, J., 1981, “ Design of a Multitask Exoskeletal Walking Device for Paraplegics,” Biomechanics of Medical Devices, Taylor & Francis Group, London, UK, pp. 569–644.
7.
Esquenazi
,
A.
,
Talaty
,
M.
,
Packel
,
A.
, and
Saulino
,
M.
,
2012
, “
The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals With Thoracic-Level Motor-Complete Spinal Cord Injury
,”
Am. J. Phys. Med. Rehabil.
,
91
(
11
), pp.
911
921
.10.1097/PHM.0b013e318269d9a3
8.
Raab
,
K.
,
Krakow
,
K.
,
Tripp
,
F.
, and
Jung
,
M.
,
2016
, “
Effects of Training With the ReWalk Exoskeleton on Quality of Life in Incomplete Spinal Cord Injury: A Single Case Study
,”
Spinal Cord Ser. Cases
,
2
(
1
), pp.
1
3
.10.1038/scsandc.2015.25
9.
Baunsgaard
,
C. B.
,
Nissen
,
U.
,
Brust
,
A.
,
Frotzler
,
A.
,
Ribeill
,
C.
,
Kalke
,
Y.
,
Leon
,
N.
,
Gómez
,
B.
,
Samuelsson
,
K.
,
Antepohl
,
W.
,
Holmström
,
U.
,
Marklund
,
N.
,
Glott
,
T.
,
Opheim
,
A.
,
Benito
,
J.
,
Murillo
,
N.
,
Nachtegaal
,
J.
,
Faber
,
W.
, and
Biering-Sørensen
,
F.
,
2018
, “
Gait Training After Spinal Cord Injury: Safety, Feasibility and Gait Function Following 8 Weeks of Training With the Exoskeletons From Ekso Bionics
,”
Spinal Cord
,
56
(
2
), pp.
106
116
.10.1038/s41393-017-0013-7
10.
Strausser
,
K. A.
, and
Kazerooni
,
H.
,
2011
, “
The Development and Testing of a Human Machine Interface for a Mobile Medical Exoskeleton
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, San Francisco, CA, Sept. 25–30, pp.
4911
4916
.10.1109/IROS.2011.6095025
11.
Banala
,
S. K.
,
Kim
,
S. H.
,
Agrawal
,
S. K.
, and
Scholz
,
J. P.
,
2009
, “
Robot Assisted Gait Training With Active Leg Exoskeleton (ALEX)
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
17
(
1
), pp.
2
8
.10.1109/TNSRE.2008.2008280
12.
Veneman
,
J. F.
,
Kruidhof
,
R.
,
Hekman
,
E. E. G.
,
Ekkelenkamp
,
R.
,
Van Asseldonk
,
E. H. F.
, and
van der Kooij
,
H.
,
2007
, “
Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
379
386
.10.1109/TNSRE.2007.903919
13.
Wang
,
S.
,
Wang
,
L.
,
Meijneke
,
C.
,
van Asseldonk
,
E.
,
Hoellinger
,
T.
,
Cheron
,
G.
,
Ivanenko
,
Y.
,
La Scaleia
,
V.
,
Sylos-Labini
,
F.
,
Molinari
,
M.
,
Tamburella
,
F.
,
Pisotta
,
I.
,
Thorsteinsson
,
F.
,
Ilzkovitz
,
M.
,
Gancet
,
J.
,
Nevatia
,
Y.
,
Hauffe
,
R.
,
Zanow
,
F.
, and
van der Kooij
,
H.
,
2015
, “
Design and Control of the MINDWALKER Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
277
286
.10.1109/TNSRE.2014.2365697
14.
Farris
,
R. J.
,
Quintero
,
H. A.
, and
Goldfarb
,
M.
,
2011
, “
Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
6
), pp.
652
659
.10.1109/TNSRE.2011.2163083
15.
Hartigan
,
C.
,
Kandilakis
,
C.
,
Dalley
,
S.
,
Clausen
,
M.
,
Wilson
,
E.
,
Morrison
,
S.
,
Etheridge
,
S.
, and
Farris
,
R.
,
2015
, “
Mobility Outcomes Following Five Training Sessions With a Powered Exoskeleton
,”
Top. Spinal Cord Inj. Rehabil.
,
21
(
2
), pp.
93
99
.10.1310/sci2102-93
16.
Tefertiller
,
C.
,
Hays
,
K.
,
Jones
,
J.
,
Jayaraman
,
A.
,
Hartigan
,
C.
,
Bushnik
,
T.
, and
Forrest
,
G. F.
,
2018
, “
Initial Outcomes From a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury
,”
Top. Spinal Cord Inj. Rehabil.
,
24
(
1
), pp.
78
85
.10.1310/sci17-00014
17.
Kawamoto
,
H.
,
Lee
,
S.
,
Kanbe
,
S.
, and
Sankai
,
Y.
,
2003
, “
Power Assist Method for HAL-3 Using EMG-Based Feedback Controller
,”
IEEE International Conference on Systems, Man and Cybernetics SMC'03 Conference Proceedings. Conference Theme - System Security and Assurance (Cat. No.03CH37483)
, Washington, DC, Vol.
2
, Oct. 8, pp.
1648
1653
.10.1109/ICSMC.2003.1244649
18.
Birch
,
N.
,
Graham
,
J.
,
Priestley
,
T.
,
Heywood
,
C.
,
Sakel
,
M.
,
Gall
,
A.
,
Nunn
,
A.
, and
Signal
,
N.
,
2017
, “
Results of the First Interim Analysis of the RAPPER II Trial in Patients With Spinal Cord Injury: Ambulation and Functional Exercise Programs in the REX Powered Walking Aid
,”
J. NeuroEng. Rehabil.
,
14
(
1
), p.
60
.10.1186/s12984-017-0274-6
19.
Gurriet
,
T.
,
Finet
,
S.
,
Boeris
,
G.
,
Duburcq
,
A.
,
Hereid
,
A.
,
Harib
,
O.
,
Masselin
,
M.
,
Grizzle
,
J.
, and
Ames
,
A. D.
,
2018
, “
Towards Restoring Locomotion for Paraplegics: Realizing Dynamically Stable Walking on Exoskeletons
,” IEEE International Conference on Robotics and Automation (
ICRA
),
IEEE
, Brisbane, QLD, May 21–25, pp.
2804
2811
.10.1109/ICRA.2018.8460647
20.
Harib
,
O.
,
Hereid
,
A.
,
Agrawal
,
A.
,
Gurriet
,
T.
,
Finet
,
S.
,
Boeris
,
G.
,
Duburcq
,
A.
,
Mungai
,
M. E.
,
Masselin
,
M.
,
Ames
,
A. D.
,
Sreenath
,
K.
, and
Grizzle
,
J.
,
2018
, “
Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-Free Dynamic Walking
,”
IEEE Control Syst.
,
38
(
6
), pp.
61
87
.10.1109/MCS.2018.2866604
21.
Gardner
,
A. D.
,
Potgieter
,
J.
, and
Noble
,
F. K.
,
2017
, “
A Review of Commercially Available Exoskeletons' Capabilities
,” 24th International Conference on Mechatronics and Machine Vision in Practice (
M2VIP
), Auckland, NZ, Nov. 21–23, pp.
1
5
.10.1109/M2VIP.2017.8211470
22.
Thakkar
,
K.
,
Paredes
,
V.
, and
Hereid
,
A.
,
2021
, “
Adaptive Feedback Regulator for Powered Lower-Limb Exoskeleton Under Model Uncertainty
,” ArXiv210411775 Cs Eess.
23.
Díaz
,
I.
,
Gil
,
J. J.
, and
Sánchez
,
E.
,
2011
, “
Lower-Limb Robotic Rehabilitation: Literature Review and Challenges
,”
J. Robot.
,
2011
, pp.
1
11
.10.1155/2011/759764
24.
Viteckova
,
S.
,
Kutilek
,
P.
, and
Jirina
,
M.
,
2013
, “
Wearable Lower Limb Robotics: A Review
,”
Biocybern. Biomed. Eng.
,
33
(
2
), pp.
96
105
.10.1016/j.bbe.2013.03.005
25.
Yan
,
T.
,
Cempini
,
M.
,
Oddo
,
C. M.
, and
Vitiello
,
N.
,
2015
, “
Review of Assistive Strategies in Powered Lower-Limb Orthoses and Exoskeletons
,”
Robot. Auton. Syst.
,
64
, pp.
120
136
.10.1016/j.robot.2014.09.032
26.
Dollar
,
A. M.
, and
Herr
,
H.
,
2008
, “
Lower Extremity Exoskeletons and Active Orthoses: Challenges and State-of-the-Art
,”
IEEE Trans. Robot.
,
24
(
1
), pp.
144
158
.10.1109/TRO.2008.915453
27.
Quintero
,
H. A.
,
Farris
,
R. J.
,
Hartigan
,
C.
,
Clesson
,
I.
, and
Goldfarb
,
M.
,
2011
, “
A Powered Lower Limb Orthosis for Providing Legged Mobility in Paraplegic Individuals
,”
Top. Spinal Cord Inj. Rehabil.
,
17
(
1
), pp.
25
33
.10.1310/sci1701-25
28.
Zeilig
,
G.
,
Weingarden
,
H.
,
Zwecker
,
M.
,
Dudkiewicz
,
I.
,
Bloch
,
A.
, and
Esquenazi
,
A.
,
2012
, “
Safety and Tolerance of the ReWalkTM Exoskeleton Suit for Ambulation by People With Complete Spinal Cord Injury: A Pilot Study
,”
J. Spinal Cord Med.
,
35
(
2
), pp.
96
101
.10.1179/2045772312Y.0000000003
29.
Barbareschi
,
G.
,
Richards
,
R.
,
Thornton
,
M.
,
Carlson
,
T.
, and
Holloway
,
C.
,
2015
, “
Statically versus Dynamically Balanced Gait: Analysis of a Robotic Exoskeleton Compared With a Human
,” 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (
EMBC
),
IEEE
, Milan, Aug. 25–29, pp.
6728
6731
.10.1109/EMBC.2015.7319937
30.
Mummolo
,
C.
,
Mangialardi
,
L.
, and
Kim
,
J. H.
,
2013
, “
Quantifying Dynamic Characteristics of Human Walking for Comprehensive Gait Cycle
,”
ASME J. Biomech. Eng.
,
135
(
9
), p. 091006.10.1115/1.4024755
31.
Kalita
,
B.
,
Narayan
,
J.
, and
Dwivedy
,
S. K.
,
2021
, “
Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review
,”
Int. J. Soc. Robot.
,
13
(
4
), pp.
775
793
.10.1007/s12369-020-00662-9
32.
Sanz-Merodio
,
D.
,
Sancho
,
J.
,
Pérez
,
M.
, and
Garca
,
E.
,
2016
, “
Control Architecture of the Atlas 2020 Lower-Limb Active Orthosis
,”
Advances in Cooperative Robotics
,
World Scientific
, Singapore, pp.
860
868
.
33.
Sankai
,
Y.
,
2007
, “
HAL: Hybrid Assistive Limb Based on Cybernics
,”
Rob. Res. Springer Tracts Adv. Rob.
, 66, p.
34
.10.1007/978-3-642-14743-2_3
34.
Mummolo
,
C.
,
Peng
,
W. Z.
,
Agarwal
,
S.
,
Griffin
,
R.
,
Neuhaus
,
P. D.
, and
Kim
,
J. H.
,
2018
, “
Stability of Mina v2 for Robot-Assisted Balance and Locomotion
,”
Front. Neurorob.
,
12
, p.
62
.10.3389/fnbot.2018.00062
35.
Winter
,
D. A.
,
1991
,
The Biomechanics and Motor Control of Human Gait: Normal, Elderly and Pathological
,
University of Waterloo Press
, Waterloo, ON, CA.
36.
Schwartz
,
M. H.
,
Rozumalski
,
A.
, and
Trost
,
J. P.
,
2008
, “
The Effect of Walking Speed on the Gait of Typically Developing Children
,”
J. Biomech.
,
41
(
8
), pp.
1639
1650
.10.1016/j.jbiomech.2008.03.015
37.
Suzuki
,
K.
,
Mito
,
G.
,
Kawamoto
,
H.
,
Hasegawa
,
Y.
, and
Sankai
,
Y.
,
2007
, “
Intention-Based Walking Support for Paraplegia Patients With Robot Suit HAL
,”
Adv. Robot.
,
21
(
12
), pp.
1441
1469
.10.1163/156855307781746061
38.
Jansen
,
O.
,
Grasmuecke
,
D.
,
Meindl
,
R. C.
,
Tegenthoff
,
M.
,
Schwenkreis
,
P.
,
Sczesny-Kaiser
,
M.
,
Wessling
,
M.
,
Schildhauer
,
T. A.
,
Fisahn
,
C.
, and
Aach
,
M.
,
2018
, “
Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients
,”
World Neurosurg.
,
110
, pp.
e73
e78
.10.1016/j.wneu.2017.10.080
39.
Hidler
,
J. M.
, and
Wall
,
A. E.
,
2005
, “
Alterations in Muscle Activation Patterns During Robotic-Assisted Walking
,”
Clin. Biomech.
,
20
(
2
), pp.
184
193
.10.1016/j.clinbiomech.2004.09.016
40.
Israel
,
J. F.
,
Campbell
,
D. D.
,
Kahn
,
J. H.
, and
Hornby
,
T. G.
,
2006
, “
Metabolic Costs and Muscle Activity Patterns During Robotic- and Therapist-Assisted Treadmill Walking in Individuals With Incomplete Spinal Cord Injury
,”
Phys. Ther.
,
86
(
11
), pp.
1466
1478
.10.2522/ptj.20050266
41.
Lv
,
G.
,
Zhu
,
H.
, and
Gregg
,
R. D.
,
2018
, “
On the Design and Control of Highly Backdrivable Lower-Limb Exoskeletons: A Discussion of Past and Ongoing Work
,”
IEEE Control Syst.
,
38
(
6
), pp.
88
113
.10.1109/MCS.2018.2866605
42.
Zhu
,
H.
,
Doan
,
J.
,
Stence
,
C.
,
Lv
,
G.
,
Elery
,
T.
, and
Gregg
,
R.
,
2017
, “
Design and Validation of a Torque Dense, Highly Backdrivable Powered Knee-Ankle Orthosis
,” IEEE International Conference on Robotics and Automation (
ICRA
), Singapore, May 29–June 3, pp.
504
510
.10.1109/ICRA.2017.7989063
43.
Nef
,
T.
, and
Lum
,
P.
,
2009
, “
Improving Backdrivability in Geared Rehabilitation Robots
,”
Med. Biol. Eng. Comput.
,
47
(
4
), pp.
441
447
.10.1007/s11517-009-0437-0
44.
Lotze
,
M.
,
Braun
,
C.
,
Birbaumer
,
N.
,
Anders
,
S.
, and
Cohen
,
L. G.
,
2003
, “
Motor Learning Elicited by Voluntary Drive
,”
Brain
,
126
(
4
), pp.
866
872
.10.1093/brain/awg079
45.
Li
,
W.-Z.
,
Cao
,
G.-Z.
, and
Zhu
,
A.-B.
,
2021
, “
Review on Control Strategies for Lower Limb Rehabilitation Exoskeletons
,”
IEEE Access
,
9
, pp.
123040
123060
.10.1109/ACCESS.2021.3110595
46.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
,
2003
, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
,
48
(
1
), pp.
42
56
.10.1109/TAC.2002.806653
47.
Chevallereau
,
C.
,
Abba
,
G.
,
Aoustin
,
Y.
,
Plestan
,
F.
,
Westervelt
,
E.
,
Canudas de Wit
,
C.
, and
Grizzle
,
J.
,
2003
, “
RABBIT: A Testbed for Advanced Control Theory
,”
IEEE Control Syst. Mag.
,
23
(
5
), pp.
57
79
.10.1109/MCS.2003.1234651
48.
Yang
,
T.
,
Westervelt
,
E. R.
,
Schmiedeler
,
J. P.
, and
Bockbrader
,
R. A.
,
2008
, “
Design and Control of a Planar Bipedal Robot ERNIE With Parallel Knee Compliance
,”
Auton. Robots
,
25
(
4
), pp.
317
330
.10.1007/s10514-008-9096-5
49.
Sreenath
,
K.
,
Park
,
H.-W.
,
Poulakakis
,
I.
, and
Grizzle
,
J. W.
,
2011
, “
A Compliant Hybrid Zero Dynamics Controller for Stable, Efficient and Fast Bipedal Walking on MABEL
,”
Int. J. Robot. Res.
,
30
(
9
), pp.
1170
1193
.10.1177/0278364910379882
50.
Reher
,
J.
,
Cousineau
,
E. A.
,
Hereid
,
A.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
Realizing Dynamic and Efficient Bipedal Locomotion on the Humanoid Robot DURUS
,” IEEE International Conference on Robotics and Automation (
ICRA
), Stockholm, SE, May 16–21, pp.
1794
1801
.10.1109/ICRA.2016.7487325
51.
Reher
,
J. P.
,
Hereid
,
A.
,
Kolathaya
,
S.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2020
, “
Algorithmic Foundations of Realizing Multi-Contact Locomotion on the Humanoid Robot DURUS
,”
Algorithmic Foundations of Robotics XII
,
K.
Goldberg
,
P.
Abbeel
,
K.
Bekris
, and
L.
Miller
, eds.,
Springer International Publishing
,
Cham
, pp.
400
415
.
52.
Kim
,
J.
, and
Akbari Hamed
,
K.
,
2021
, “
Cooperative Locomotion Via Supervisory Predictive Control and Distributed Nonlinear Controllers
,”
ASME J. Dyn. Syst. Meas. Control
,
144
(
3
), p.
031005
.10.1115/1.4052917
53.
Tucker
,
M.
,
Novoseller
,
E.
,
Kann
,
C.
,
Sui
,
Y.
,
Yue
,
Y.
,
Burdick
,
J. W.
, and
Ames
,
A. D.
,
2020
, “
Preference-Based Learning for Exoskeleton Gait Optimization
,” IEEE International Conference on Robotics and Automation (
ICRA
), Paris, France, May 31–Aug. 31, pp.
2351
2357
.10.1109/ICRA40945.2020.9196661
54.
Tucker
,
M.
,
Cheng
,
M.
,
Novoseller
,
E.
,
Cheng
,
R.
,
Yue
,
Y.
,
Burdick
,
J. W.
, and
Ames
,
A. D.
,
2020
, “
Human Preference-Based Learning for High-Dimensional Optimization of Exoskeleton Walking Gaits
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Las Vegas, NV, Oct. 25–Jan. 24, pp.
3423
3430
.10.1109/IROS45743.2020.9341416
55.
Gurriet
,
T.
,
Tucker
,
M.
,
Duburcq
,
A.
,
Boeris
,
G.
, and
Ames
,
A. D.
,
2020
, “
Towards Variable Assistance for Lower Body Exoskeletons
,”
IEEE Robot. Autom. Lett.
,
5
(
1
), pp.
266
273
.10.1109/LRA.2019.2955946
56.
Agrawal
,
A.
,
Harib
,
O.
,
Hereid
,
A.
,
Finet
,
S.
,
Masselin
,
M.
,
Praly
,
L.
,
Ames
,
A. D.
,
Sreenath
,
K.
, and
Grizzle
,
J. W.
,
2017
, “
First Steps Towards Translating HZD Control of Bipedal Robots to Decentralized Control of Exoskeletons
,”
IEEE Access
,
5
, pp.
9919
9934
.10.1109/ACCESS.2017.2690407
57.
Ames
,
A. D.
,
2014
, “
Human-Inspired Control of Bipedal Walking Robots
,”
IEEE Trans. Autom. Control
,
59
(
5
), pp.
1115
1130
.10.1109/TAC.2014.2299342
58.
Søraa
,
R. A.
, and
Fosch-Villaronga
,
E.
,
2020
, “
Exoskeletons for All: The Interplay Between Exoskeletons, Inclusion, Gender, and Intersectionality
,”
Paladyn. J. Behav. Robot.
,
11
(
1
), pp.
217
227
.10.1515/pjbr-2020-0036
59.
Dalley
,
S. A.
,
Hartigan
,
C.
,
Kandilakis
,
C.
, and
Farris
,
R. J.
,
2018
, “
Increased Walking Speed and Speed Control in Exoskeleton Enabled Gait
,”
Seventh IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
, Enschede, The Netherlands, Aug. 27–29, pp.
689
694
.10.1109/BIOROB.2018.8488065
60.
Parker Hannifin Corp.,
2018
, “
Indego Explorer User Manual Supplement 043-008-000 Rev A
,” Parker Hannifin Corp.
61.
Du Bois
,
J. L.
,
Lieven
,
N. A. J.
, and
Adhikari
,
S.
,
2009
, “
Error Analysis in Trifilar Inertia Measurements
,”
Exp. Mech.
,
49
(
4
), pp.
533
540
.10.1007/s11340-008-9142-4
62.
Korr
,
A. L.
, and
Hyer
,
P.
,
1962
,
A Trifilar Pendulum for the Determination of Moments of Inertia
,
Frankford Arsenal Philadelphia PA Pitman-Dunn Research Labs
, Philadelphia, PA, Report No. AD0287534.
63.
Laubscher
,
C. A.
,
Goo
,
A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
, “
Hybrid Impedance-Sliding Mode Switching Control of the Indego Explorer Lower-Limb Exoskeleton in Able-Bodied Walking
,”
J. Intell. Robot. Syst.
, (Accepted).
64.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
,
2018
,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
CRC Press
, Boca Raton, FL.
65.
Fevre
,
M.
,
Wensing
,
P. M.
, and
Schmiedeler
,
J. P.
,
2020
, “
Rapid Bipedal Gait Optimization in CasADi
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
),
IEEE
, Las Vegas, NV, Oct. 25-Jan. 24, pp.
3672
3678
.10.1109/IROS45743.2020.9341586
66.
Isidori
,
A.
,
2013
,
Nonlinear Control Systems
,
Springer Science & Business Media
, Berlin, DE.
67.
Hereid
,
A.
,
Cousineau
,
E. A.
,
Hubicki
,
C. M.
, and
Ames
,
A. D.
,
2016
, “
3D Dynamic Walking With Underactuated Humanoid Robots: A Direct Collocation Framework for Optimizing Hybrid Zero Dynamics
,” IEEE International Conference on Robotics and Automation (
ICRA
), Stockholm, SE, May 16–21, pp.
1447
1454
.10.1109/ICRA.2016.7487279
68.
Hereid
,
A.
, and
Ames
,
A. D.
,
2017
, “
FROST∗: Fast Robot Optimization and Simulation Toolkit
,” IEEE/RSJ International Conference on Intelligent Robots and Systems (
IROS
), Vancouver, BC, Sept. 24–28, pp.
719
726
.10.1109/IROS.2017.8202230
69.
Lack
,
J.
,
Powell
,
M. J.
, and
Ames
,
A. D.
,
2014
, “
Planar Multi-Contact Bipedal Walking Using Hybrid Zero Dynamics
,” IEEE International Conference on Robotics and Automation (
ICRA
),
IEEE
, Hong Kong, China, May 31–June 5, pp.
2582
2588
10.1109/ICRA.2014.6907229.
70.
Westervelt
,
E. R.
,
2003
, “
Toward a Coherent Framework for the Control of Planar Biped Locomotion
,” Ph.D. dissertation,
University of Michigan
, Ann Arbor, MI.
71.
Rose
,
J.
, and
Gamble
,
J. G.
,
2006
,
Human Walking
,
Lippincott Williams & Wilkins
, Philadelphia, PA.
72.
Gregg
,
R. D.
,
Lenzi
,
T.
,
Hargrove
,
L. J.
, and
Sensinger
,
J. W.
,
2014
, “
Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees
,”
IEEE Trans. Robot.
,
30
(
6
), pp.
1455
1471
.10.1109/TRO.2014.2361937
73.
Goo
,
A.
,
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2020
, “
Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator
,”
Actuators
,
9
(
4
), p.
138
.10.3390/act9040138
74.
Laubscher
,
C. A.
,
Farris
,
R. J.
, and
Sawicki
,
J. T.
,
2017
, “
Design and Preliminary Evaluation of a Powered Pediatric Lower Limb Orthosis
,”
ASME
Paper No. DETC2017-67599.10.1115/DETC2017-67599
75.
Laubscher
,
C. A.
,
Farris
,
R. J.
,
van den Bogert
,
A. J.
, and
Sawicki
,
J. T.
,
2021
, “
An Anthropometrically Parameterized Assistive Lower-Limb Exoskeleton
,”
ASME J. Biomech. Eng.
,
143
(
10
), p.
105001
.10.1115/1.4051214
You do not currently have access to this content.