Abstract

Modeling driver steering behavior plays an ever-important role in nowadays automotive dynamics and control applications. Especially, understanding individuals' steering characteristics enables the advanced driver assistance systems (ADAS) to adapt to particular drivers, which provides enhanced protection while mitigating human–machine conflict. Driver-adaptive ADAS requires identifying the parameters inside a driver steering model in real-time to account for driving characteristics variations caused by weather, lighting, road, or driver physiological conditions. Usually, recursive least squares (RLS) and Kalman filter are employed to update the driver steering model parameters online. However, because of their asymptotical nature, the convergence speed of the identified parameters could be slow. In contrast, this paper adopts a purely algebraic perspective to identify parameters of a driver steering model, which can achieve parameter identification within a short period. To verify the proposed method, we first apply synthetic driver steering data to show its superior performance over an RLS identifier in identifying constant model parameters, i.e., feedback steering gain, feedforward steering gain, preview time, and first-order neuromuscular lag. Then, we utilize real measurement data from human subject driving simulator experiments to illustrate how the time-varying feedback and feedforward steering gains can be updated online via the algebraic method.

References

1.
Weir
,
D. H.
, and
McRuer
,
D. T.
,
1970
, “
Dynamics of Driver Vehicle Steering Control
,”
Automatica
,
6
(
1
), pp.
87
98
.10.1016/0005-1098(70)90077-4
2.
McRuer
,
D. T.
,
Allen
,
R. W.
,
Weir
,
D. H.
, and
Klein
,
R. H.
,
1977
, “
New Results in Driver Steering Control Models
,”
Hum. Factors J. Hum. Factors Ergon. Soc.
,
19
(
4
), pp.
381
397
.10.1177/001872087701900406
3.
Salvucci
,
D. D.
, and
Gray
,
R.
,
2004
, “
A Two-Point Visual Control Model of Steering
,”
Perception
,
33
(
10
), pp.
1233
1248
.10.1068/p5343
4.
Mars
,
F.
, and
Chevrel
,
P.
,
2017
, “
Modelling Human Control of Steering for the Design of Advanced Driver Assistance Systems
,”
Annu. Rev. Control
,
44
, pp.
292
302
.10.1016/j.arcontrol.2017.09.011
5.
Sentouh
,
C.
,
Nguyen
,
A. T.
,
Benloucif
,
M. A.
, and
Popieul
,
J. C.
,
2019
, “
Driver-Automation Cooperation Oriented Approach for Shared Control of Lane Keeping Assist Systems
,”
IEEE Trans. Control Syst. Technol.
,
27
(
5
), pp.
1962
1978
.10.1109/TCST.2018.2842211
6.
Kolekar
,
S.
,
de Winter
,
J.
, and
Abbink
,
D.
,
2020
, “
Human-Like Driving Behaviour Emerges From a Risk-Based Driver Model
,”
Nat. Commun.
,
11
(
1
), pp.
1
13
.10.1038/s41467-020-18353-4
7.
Nash
,
C. J.
, and
Cole
,
D. J.
,
2019
, “
Measurement and Modeling of the Effect of Sensory Conflicts on Driver Steering Control
,”
ASME J. Dyn. Syst. Meas. Control.
,
141
(
6
), p. 061012.10.1115/1.4042876
8.
Chen
,
G.
, and
Su
,
S. H.
,
2020
, “
Driver-Behavior-Based Robust Steering Control of Unmanned Driving Robotic Vehicle With Modeling Uncertainties and External Disturbance
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
234
(
6
), pp.
1585
1596
.10.1177/0954407019895158
9.
Wang
,
J.
,
Fang
,
Z.
,
Dai
,
M.
,
Yin
,
G.
,
Xia
,
J.
, and
Li
,
P.
,
2021
, “
Robust Steering Assistance Control for Tracking Large-Curvature Path Considering Uncertainties of Driver's Steering Behavior
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
235
(
7
), pp.
2013
2028
.10.1177/0954407020976827
10.
Wang
,
J.
,
Dai
,
M.
,
Yin
,
G.
, and
Chen
,
N.
,
2018
, “
Output-Feedback Robust Control for Vehicle Path Tracking Considering Different Human Drivers' Characteristics
,”
Mechatronics
,
50
, pp.
402
412
.10.1016/j.mechatronics.2017.05.001
11.
Hu
,
C.
, and
Wang
,
J.
,
2021
, “
Trust-Based and Individualizable Adaptive Cruise Control Using Control Barrier Function Approach With Prescribed Performance
,”
IEEE Trans. Intell. Transp. Syst.
, pp.
1
11
.
12.
Best
,
M. C.
,
2019
, “
Real-Time Characterisation of Driver Steering Behaviour
,”
Veh. Syst. Dyn.
,
57
(
1
), pp.
64
85
.10.1080/00423114.2018.1447678
13.
Gobbi
,
M.
,
Comolli
,
F.
,
Hada
,
M.
, and
Mastinu
,
G.
,
2019
, “
An Instrumented Steering Wheel for Driver Model Development
,”
Mechatronics
,
64
, p.
102285
.10.1016/j.mechatronics.2019.102285
14.
Marouf
,
A.
,
Pudlo
,
P.
,
Sentouh
,
C.
, and
Djemaï
,
M.
,
2017
, “
Investigation of the Driver's Arm Viscoelastic Properties During Steering Vehicle Maneuver
,”
IEEE Trans. Syst. Man, Cybern. Syst.
,
47
(
6
), pp.
1030
1036
.10.1109/TSMC.2016.2523915
15.
Ercan
,
Z.
,
Carvalho
,
A.
,
Gokasan
,
M.
, and
Borrelli
,
F.
,
2017
, “
Modeling, Identification, and Predictive Control of a Driver Steering Assistance System
,”
IEEE Trans. Human-Mach. Syst.
,
47
(
5
), pp.
1
11
.10.1109/THMS.2017.2717881
16.
Hanbing
,
W.
,
Yanhong
,
W.
,
Xing
,
C.
,
Jin
,
X.
, and
Sharma
,
R.
,
2020
, “
Human-Vehicle Dynamic Model With Driver's Neuromuscular Characteristic for Shared Control of Autonomous Vehicle
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
, epub, pp.
1
13
.10.1177/0954407020977108
17.
Falcone
,
P.
,
Ali
,
M.
, and
Sjöberg
,
J.
,
2011
, “
Predictive Threat Assessment Via Reachability Analysis and Set Invariance Theory
,”
IEEE Trans. Intell. Transp. Syst.
,
12
(
4
), pp.
1352
1361
.10.1109/TITS.2011.2158210
18.
You
,
C.
,
Lu
,
J.
, and
Tsiotras
,
P.
,
2017
, “
Nonlinear Driver Parameter Estimation and Driver Steering Behavior Analysis for ADAS Using Field Test Data
,”
IEEE Trans. Human-Mach. Syst.
,
47
(
5
), pp.
686
699
.10.1109/THMS.2017.2727547
19.
Hsiao
,
T.
,
2008
, “
Time-Varying System Identification Via Maximum a Posteriori Estimation and Its Application to Driver Steering Models
,”
Proceedings of the American Control Conference
,
Seattle, WA, June 11–13,
pp.
684
689
, Paper no. WeBI01.8.10.1109/ACC.2008.4586572
20.
Becedas
,
J.
,
Mamani
,
G.
, and
Feliu
,
V.
,
2010
, “
Algebraic Parameters Identification of DC Motors: Methodology and Analysis
,”
Int. J. Syst. Sci.
,
41
(
10
), pp.
1241
1255
.10.1080/00207720903244097
21.
Fliess
,
M.
,
Join
,
C.
, and
Ramirez
,
H. S.
,
2008
, “
Non-Linear Estimation is Easy
,”
Int. J. Model. Identif. Control
,
4
(
1
), pp.
12
27
.10.1504/IJMIC.2008.020996
22.
Morales
,
R.
,
Feliu
,
V.
, and
Sira-Ramirez
,
H.
,
2011
, “
Nonlinear Control for Magnetic Levitation Systems Based on Fast Online Algebraic Identification of the Input Gain
,”
IEEE Trans. Control Syst. Technol.
,
19
(
4
), pp.
757
771
.10.1109/TCST.2010.2057511
23.
Diop
,
S.
, and
Fliess
,
M.
,
1992
, “
Nonlinear Observability, Identifiability, and Persistent Trajectories
,”
Proceedings of the IEEE Conference on Decision and Control
, Brighton, UK, Dec. 11–13, pp.
714
719
, Paper no. W3-1 4:20.10.1109/CDC.1991.261405
24.
Schnelle
,
S.
,
Wang
,
J.
,
Su
,
H.
, and
Jagacinski
,
R.
,
2017
, “
A Driver Steering Model With Personalized Desired Path Generation
,”
IEEE Trans. Syst. Man, Cybern. Syst.
,
47
(
1
), pp.
111
120
.10.1109/TSMC.2016.2529582
25.
Sentouh
,
C.
,
Chevrel
,
P.
,
Mars
,
F.
, and
Claveau
,
F.
,
2009
, “
A Sensorimotor Driver Model for Steering Control
,”
IEEE International Conference on Systems, Man and Cybernetics
,
San Antonio, TX
, Oct. 11–14, pp.
2462
2467
.10.1109/ICSMC.2009.5346350
26.
Chen
,
L. K.
, and
Ulsoy
,
G. G.
,
2001
, “
Identification of a Driver Steering Model, and Model Uncertainty, From Driving Simulator Data
,”
ASME J. Dyn. Syst. Meas. Control.
,
123
(
4
), pp.
623
629
.10.1115/1.1409554
27.
Wang
,
J.
,
Zhang
,
G.
,
Wang
,
R.
,
Schnelle
,
S. C.
, and
Wang
,
J.
,
2017
, “
A Gain-Scheduling Driver Assistance Trajectory-Following Algorithm Considering Different Driver Steering Characteristics
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
5
), pp.
1097
1108
.10.1109/TITS.2016.2598792
28.
Pick
,
A. J.
, and
Cole
,
D. J.
,
2008
, “
A Mathematical Model of Driver Steering Control Including Neuromuscular Dynamics
,”
ASME J. Dyn. Syst. Meas. Control.
,
130
(
3
), p.
031004
.10.1115/1.2837452
29.
Okamoto
,
K.
, and
Tsiotras
,
P.
,
2019
, “
Data-Driven Human Driver Lateral Control Models for Developing Haptic-Shared Control Advanced Driver Assist Systems
,”
Rob. Auton. Syst.
,
114
, pp.
155
171
.10.1016/j.robot.2019.01.020
30.
Lefèvre
,
S.
,
Carvalho
,
A.
,
Gao
,
Y.
,
Tseng
,
H. E.
, and
Borrelli
,
F.
,
2015
, “
Driver Models for Personalised Driving Assistance
,”
Veh. Syst. Dyn.
,
53
(
12
), pp.
1705
1720
.10.1080/00423114.2015.1062899
31.
Punzo
,
V.
,
Ciuffo
,
B.
, and
Montanino
,
M.
,
2012
, “
Can Results of Car-Following Model Calibration Based on Trajectory Data Be Trusted?
,”
Transp. Res. Rec. J. Transp. Res. Board
,
2315
(
1
), pp.
11
24
.10.3141/2315-02
32.
Mboup
,
M.
,
Join
,
C.
, and
Fliess
,
M.
,
2009
, “
Numerical Differentiation With Annihilators in Noisy Environment
,”
Numer. Algorithms
,
50
(
4
), pp.
439
467
.10.1007/s11075-008-9236-1
33.
Wang
,
Z.
, and
Wang
,
J.
,
2020
, “
Ultra-Local Model Predictive Control: A Model-Free Approach and Its Application on Automated Vehicle Trajectory Tracking
,”
Control Eng. Pract.
,
101
, p.
104482
.10.1016/j.conengprac.2020.104482
34.
Kalman
,
R. E.
,
1960
, “
A New Approach to Linear Filtering and Prediction Problems
,”
ASME J. Fluids Eng.
,
82
(
1
), pp.
35
45
.10.1115/1.3662552
35.
Gruber
,
M.
,
1997
,
Statistical Digital Signal Processing and Modeling
,
Wiley Press
, Toronto, ON, Canada.
36.
Lyashevskiy
,
S.
, and
Chen
,
Y.
,
2002
, “
The Lyapunov Stability Theory in System Identification
,”
Proceedings of the American Control Conference
,
Albuquerque, NM
, June 6, pp.
617
621
.
37.
Fliess
,
M.
, and
Sira–Ramírez
,
H.
,
2003
, “
An Algebraic Framework for Linear Identification
,”
ESAIM Control. Optim. Calc. Var.
,
9
, pp.
151
168
.10.1051/cocv:2003008
38.
Garrido
,
R.
, and
Concha
,
A.
,
2013
, “
An Algebraic Recursive Method for Parameter Identification of a Servo Model
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1572
1580
.10.1109/TMECH.2012.2208197
39.
Schnelle
,
S.
, and
Wang
,
J.
,
2014
, “
Sensitivity Analysis of Human Driving Characteristics on Road and Driving Conditions for Active Vehicle Control Systems
,”
IEEE
International Conference on Systems, Man and Cybernetics, San Diego, CA, Oct. 5–8,
pp.
2482
2487
.10.1109/SMC.2014.6974299
40.
Lappi
,
O.
,
Pekkanen
,
J.
, and
Itkonen
,
T. H.
,
2013
, “
Pursuit Eye-Movements in Curve Driving Differentiate Between Future Path and Tangent Point Models
,”
PLoS One
,
8
(
7
), p.
e68326
.10.1371/journal.pone.0068326
41.
Sira-Ramírez
,
H.
,
García-Rodríguez
,
C.
,
Cortés-Romero
,
J.
, and
Luviano-Juárez
,
A.
,
2014
,
Algebraic Identification and Estimation Methods in Feedback Control Systems
,
Wiley Press
, Chichester, UK.
42.
Garcia-Rodriguez
,
C.
,
Cortes-Romero
,
J. A.
, and
Sira-Ramirez
,
H.
,
2009
, “
Algebraic Identification and Discontinuous Control for Trajectory Tracking in a Perturbed 1-DOF Suspension System
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3665
3674
.10.1109/TIE.2009.2026383
You do not currently have access to this content.