Abstract

This paper presents a distributed control approach for time-varying formation of heterogeneous planar underactuated vehicle networks without global position measurements. All vehicles in the network are modeled as generic three degree-of-freedom planar rigid bodies with two control inputs, and are allowed to have nonidentical dynamics. Feasible trajectories are generated for each vehicle using the nonholonomic constraints of the vehicle dynamics. By exploiting the cascaded structure of the planar vehicle model, a transformation is introduced to define the reduced order error dynamics, and then, a sliding-mode control law is proposed. Low-level controller for each vehicle is derived such that it only requires relative position and local motion information of its neighbors in a given directed communication network. The proposed formation control law guarantees the uniform global asymptotic stability (UGAS) of the closed-loop system subject to bounded uncertainties and disturbances. The proposed approach can be applied to underactuated vehicle networks consisting of mobile robots, surface vessels, and planar aircraft. Simulations are presented to demonstrate the effectiveness of the proposed control scheme.

References

1.
Canudas-de Wit
,
C.
,
Khennouf
,
H.
,
Samson
,
C.
, and
Sordalen
,
O. J.
,
1993
, “
Nonlinear Control Design for Mobile Robots
,”
Recent Trends in Mobile Robots
,
Y. F.
Zheng
, ed., Vol.
11
,
World Scientific Series in Robotics and Intelligent Systems
, River Edge, NJ, pp.
121
156
.
2.
Panteley
,
E.
,
Lefeber
,
E.
,
Loria
,
A.
, and
Nijmeijer
,
H.
,
1998
, “
Exponential Tracking Control of a Mobile Car Using a Cascaded Approach
,”
IFAC Proc. Vols.
,
31
(
27
), pp.
201
206
.10.1016/S1474-6670(17)40028-0
3.
Wang
,
B.
,
Ashrafiuon
,
H.
, and
Nersesov
,
S. G.
,
2021
, “
The Use of Partial Stability in the Analysis of Interconnected Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
143
(
4
), p.
044501
.10.1115/1.4048780
4.
Do
,
K. D.
,
Jiang
,
Z.-P.
, and
Pan
,
J.
,
2002
, “
Underactuated Ship Global Tracking Under Relaxed Conditions
,”
IEEE Trans. Autom. Control
,
47
(
9
), pp.
1529
1536
.10.1109/TAC.2002.802755
5.
Jiang
,
Z.-P.
,
2002
, “
Global Tracking Control of Underactuated Ships by Lyapunov's Direct Method
,”
Automatica
,
38
(
2
), pp.
301
309
.10.1016/S0005-1098(01)00199-6
6.
Yu-Chan
,
C.
,
Bao-Li
,
M.
, and
Wen-Jing
,
X.
,
2017
, “
Robust Stabilization of Nonlinear PVTOL Aircraft With Parameter Uncertainties
,”
Asian J. Control
,
19
(
3
), pp.
1239
1249
.10.1002/asjc.1411
7.
Consolini
,
L.
,
Maggiore
,
M.
,
Nielsen
,
C.
, and
Tosques
,
M.
,
2010
, “
Path Following for the PVTOL Aircraft
,”
Automatica
,
46
(
8
), pp.
1284
1296
.10.1016/j.automatica.2010.05.014
8.
Ashrafiuon
,
H.
,
Nersesov
,
S.
, and
Clayton
,
G.
,
2017
, “
Trajectory Tracking Control of Planar Underactuated Vehicles
,”
IEEE Trans. Autom. Contr
ol,
62
(
4
), pp.
1959
1965
.10.1109/TAC.2016.2584180
9.
Ren
,
W.
, and
Cao
,
Y.
,
2010
,
Distributed Coordination of Multi-Agent Networks: Emergent Problems, Models, and Issues
,
Springer-Verlag
,
London, UK
.
10.
Consolini
,
L.
,
Morbidi
,
F.
,
Prattichizzo
,
D.
, and
Tosques
,
M.
,
2008
, “
Leader–Follower Formation Control of Nonholonomic Mobile Robots With Input Constraints
,”
Automatica
,
44
(
5
), pp.
1343
1349
.10.1016/j.automatica.2007.09.019
11.
Egerstedt
,
M.
, and
Hu
,
X.
,
2001
, “
Formation Constrained Multi-Agent Control
,”
IEEE Trans. Robot. Automat.
,
17
(
6
), pp.
947
951
.10.1109/70.976029
12.
Tabuada
,
P.
,
Pap
,
G. J.
, and
Lima
,
P.
,
2005
, “
Motion Feasibility of Multi-Agent Formations
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
387
392
.10.1109/TRO.2004.839224
13.
Ren
,
W.
, and
Beard
,
R. W.
,
2005
, “
Consensus Seeking in Multiagent Systems Under Dynamically Changing Interaction Topologies
,”
IEEE Trans. Autom. Control
,
50
(
5
), pp.
655
661
.10.1109/TAC.2005.846556
14.
Ren
,
W.
,
2008
, “
On Consensus Algorithms for Double-Integrator Dynamics
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1503
1509
.10.1109/TAC.2008.924961
15.
Antonelli
,
G.
,
Arrichiello
,
F.
,
Caccavale
,
F.
, and
Marino
,
A.
,
2014
, “
Decentralized Time-Varying Formation Control for Multi-Robot Systems
,”
Int. J. Rob. Res.
,
33
(
7
), pp.
1029
1043
.10.1177/0278364913519149
16.
Seo
,
J. H.
,
Shim
,
H.
, and
Back
,
J.
,
2009
, “
Consensus of High-Order Linear Systems Using Dynamic Output Feedback Compensator: Low Gain Approach
,”
Automatica
,
45
(
11
), pp.
2659
2664
.10.1016/j.automatica.2009.07.022
17.
Ren
,
W.
,
2006
, “
Distributed Attitude Consensus Among Multiple Networked Spacecraft
,”
Proceedings of American Control Conference
,
IEEE
, Minneapolis, MN, June 14–16, pp.
4237
4242
.10.1109/ACC.2006.1656474
18.
Dimarogonas
,
D. V.
,
Tsiotras
,
P.
, and
Kyriakopoulos
,
K. J.
,
2009
, “
Leader–Follower Cooperative Attitude Control of Multiple Rigid Bodies
,”
Sys. Contr. Lett.
,
58
(
6
), pp.
429
435
.10.1016/j.sysconle.2009.02.002
19.
Mei
,
J.
,
Ren
,
W.
, and
Ma
,
G.
,
2011
, “
Distributed Coordinated Tracking With a Dynamic Leader for Multiple Euler-Lagrange Systems
,”
IEEE Trans. Autom. Control
,
56
(
6
), pp.
1415
1421
.10.1109/TAC.2011.2109437
20.
Das
,
A. K.
,
Fierro
,
R.
,
Kumar
,
V.
,
Ostrowski
,
J. P.
,
Spletzer
,
J.
, and
Taylor
,
C. J.
,
2002
, “
A Vision-Based Formation Control Framework
,”
IEEE Trans. Robot. Autom.
,
18
(
5
), pp.
813
825
.10.1109/TRA.2002.803463
21.
Dong
,
W.
, and
Farrell
,
J. A.
,
2008
, “
Cooperative Control of Multiple Nonholonomic Mobile Agents
,”
IEEE Trans. Autom. Control
,
53
(
6
), pp.
1434
1448
.10.1109/TAC.2008.925852
22.
Yan
,
L.
, and
Ma
,
B.
,
2020
, “
Adaptive Practical Leader-Following Formation Control of Multiple Nonholonomic Wheeled Mobile Robots
,”
Int. J. Robust Nonlinear Control
,
30
(
17
), pp.
7216
7237
.10.1002/rnc.5165
23.
Liu
,
T.
, and
Jiang
,
Z.-P.
,
2013
, “
Distributed Formation Control of Nonholonomic Mobile Robots Without Global Position Measurements
,”
Automatica
,
49
(
2
), pp.
592
600
.10.1016/j.automatica.2012.11.031
24.
Ghasemi
,
M.
,
Nersesov
,
S. G.
,
Clayton
,
G.
, and
Ashrafiuon
,
H.
,
2014
, “
Sliding Mode Coordination Control for Multiagent Systems With Underactuated Agent Dynamics
,”
Int. J. Control
,
87
(
12
), pp.
2615
2633
.10.1080/00207179.2014.936043
25.
Kamel
,
M. A.
,
Yu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Real-Time Fault-Tolerant Formation Control of Multiple WMRS Based on Hybrid GA-PSO Algorithm
,”
IEEE Trans. Autom. Sci. Eng.
, 18, pp.
1263
1276
.10.1109/TASE.2020.3000507
26.
Kamel
,
M. A.
,
Yu
,
X.
, and
Zhang
,
Y.
,
2020
, “
Formation Control and Coordination of Multiple Unmanned Ground Vehicles in Normal and Faulty Situations: A Review
,”
Annu. Rev. Control
,
49
, pp.
128
144
.10.1016/j.arcontrol.2020.02.001
27.
Dong
,
W.
, and
Farrell
,
J.
,
2008
, “
Formation Control of Multiple Underactuated Surface Vessels
,”
IET Control Theory Appl.
,
2
(
12
), pp.
1077
1085
.10.1049/iet-cta:20080183
28.
Dong
,
W.
,
2010
, “
Cooperative Control of Underactuated Surface Vessels
,”
IET Control Theory Appl.
,
4
(
9
), pp.
1569
1580
.10.1049/iet-cta.2009.0362
29.
Jin
,
X.
,
2016
, “
Fault Tolerant Finite-Time Leader–Follower Formation Control for Autonomous Surface Vessels With LOS Range and Angle Constraints
,”
Automatica
,
68
, pp.
228
236
.10.1016/j.automatica.2016.01.064
30.
Do
,
K. D.
,
2015
, “
Coordination Control of Quadrotor VTOL Aircraft in Three-Dimensional Space
,”
Int. J. Control
,
88
(
3
), pp.
543
558
.10.1080/00207179.2014.966324
31.
Liao
,
F.
,
Teo
,
R.
,
Wang
,
J. L.
,
Dong
,
X.
,
Lin
,
F.
, and
Peng
,
K.
,
2017
, “
Distributed Formation and Reconfiguration Control of VTOL UAVs
,”
IEEE Trans. Control Syst. Technol.
,
25
(
1
), pp.
270
277
.10.1109/TCST.2016.2547952
32.
Yu
,
X.
,
Liu
,
Z.
, and
Zhang
,
Y.
,
2016
, “
Fault-Tolerant Formation Control of Multiple Uavs in the Presence of Actuator Faults
,”
Int. J. Robust Nonlinear Control
,
26
(
12
), pp.
2668
2685
.10.1002/rnc.3467
33.
Valk
,
L.
,
2018
, “
Distributed Control of Underactuated and Heterogeneous Mechanical Systems
,” Master's thesis,
Delft University of Technology
, Delft, The Netherlands.
34.
Wang
,
B.
,
Nersesov
,
S.
, and
Ashrafiuon
,
H.
,
2020
, “
A Unified Approach to Stabilization, Trajectory Tracking, and Formation Control of Planar Underactuated Vehicles
,”
Proceedings of American Control Conference
,
IEEE
, Denver, CO, July 1–3, pp.
5269
5274
.10.23919/ACC45564.2020.9147461
35.
Oh
,
K.-K.
,
Park
,
M.-C.
, and
Ahn
,
H.-S.
,
2015
, “
A Survey of Multi-Agent Formation Control
,”
Automatica
,
53
, pp.
424
440
.10.1016/j.automatica.2014.10.022
36.
Oh
,
K.-K.
, and
Ahn
,
H.-S.
,
2011
, “
Formation Control of Mobile Agents Based on Inter-Agent Distance Dynamics
,”
Automatica
,
47
(
10
), pp.
2306
2312
.10.1016/j.automatica.2011.08.019
37.
Wang
,
B.
,
Nersesov
,
S.
, and
Ashrafiuon
,
H.
,
2020
, “
Formation Control for Underactuated Surface Vessel Networks
,”
ASME
Paper No. DSCC2020-3178.10.1115/DSCC2020-3178
38.
Mesbahi
,
M.
, and
Egerstedt
,
M.
,
2010
,
Graph Theoretic Methods in Multiagent Networks
,
Princeton University Press
,
Princeton, NJ
.
39.
Desoer
,
C. A.
, and
Vidyasagar
,
M.
,
1975
,
Feedback Systems: Input-Output Properties
,
Siam
,
Philadelphia, PA
.
40.
Panteley
,
E.
,
Loria
,
A.
, and
Teel
,
A.
,
2001
, “
Relaxed Persistency of Excitation for Uniform Asymptotic Stability
,”
IEEE Trans. Autom. Control
,
46
(
12
), pp.
1874
1886
.10.1109/9.975471
41.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Englewood Cliffs, NJ
.
42.
Yang
,
J.
,
Chen
,
W.-H.
, and
Li
,
S.
,
2011
, “
Non-Linear Disturbance Observer-Based Robust Control for Systems With Mismatched Disturbances/Uncertainties
,”
IET Control Theory Appl.
,
5
(
18
), pp.
2053
2062
.10.1049/iet-cta.2010.0616
43.
Guo
,
L.
, and
Chen
,
W.-H.
,
2005
, “
Disturbance Attenuation and Rejection for Systems With Nonlinearity Via Dobc Approach
,”
Int. J. Robust Nonlinear Control
,
15
(
3
), pp.
109
125
.10.1002/rnc.978
44.
Yang
,
J.
,
Li
,
S.
, and
Yu
,
X.
,
2013
, “
Sliding-Mode Control for Systems With Mismatched Uncertainties Via a Disturbance Observer
,”
IEEE Trans. Ind. Electron.
,
60
(
1
), pp.
160
169
.10.1109/TIE.2012.2183841
45.
Cruz-Zavala
,
E.
,
Moreno
,
J. A.
, and
Fridman
,
L. M.
,
2011
, “
Uniform Robust Exact Differentiator
,”
IEEE Trans. Autom. Control
,
56
(
11
), pp.
2727
2733
.10.1109/TAC.2011.2160030
46.
Vasiljevic
,
L. K.
, and
Khalil
,
H. K.
,
2008
, “
Error Bounds in Differentiation of Noisy Signals by High-Gain Observers
,”
Syst. Control Lett.
,
57
(
10
), pp.
856
862
.10.1016/j.sysconle.2008.03.018
47.
Sastry
,
S.
,
2013
,
Nonlinear Systems: Analysis, Stability, and Control
,
Springer
,
New York
.
You do not currently have access to this content.