Abstract

The paper presents a detailed numerical and algebraic analysis of potential for improving the step ratio automatic transmission (AT) upshift performance by means of modulating the off-going clutch during the inertia phase. The numerical analysis is based on Pareto optimal frontiers obtained by using the previously developed methods for AT shift control trajectory optimization and piecewise-linear control profile parameter optimization, where the control objectives include minimization of shift time, vehicle root mean square jerk, and dissipated clutch energy. The analysis concerns the following control scenarios related to inertia phase: (1) oncoming clutch control only, (2) combined action of oncoming and off-going clutch, (3) oncoming clutch control extended with engine torque reduction control, and (4) combining all three control actions. The numerical results relate to an advanced 10-speed AT and various single-step and double-step upshifts, with emphasis on 1–3 shift. The numerical analysis results are proven algebraically based on a simplified AT model represented in bond graph form. The presented analysis shows that the off-going clutch can reduce either shift time or root mean square jerk index by introducing power recirculation via the two clutches, which is in turn paid for by certain increase of AT energy loss.

References

1.
Bai
,
S.
,
Maguire
,
J.
, and
Peng
,
H.
,
2013
,
Dynamic Analysis and Control System Design of Automatic Transmissions
,
SAE International
,
Warrendale, PA
.10.4271/R-413
2.
Greiner
,
J.
, and
Grumbach
,
M.
,
2013
, “
Automatic Transmission Systems Beyond 2020-Challenger and Competition
,”
SAE
Paper No. 2013-01-1273.10.4271/2013-01-1273
3.
Hrovat
,
D.
,
Asgari
,
J.
, and
Fodor
,
M.
,
2000
, “
Automotive Mechatronic Systems
,”
Mechatronic Systems, Techniques and Applications
,
C. T.
Leondes
, ed.,
Gordon and Breach Science Publishers
,
Newark, NJ
, pp.
1
98
.
4.
Wurm
,
M. S. A.
, and
Bestle
,
D.
,
2013
, “
New Approach for Transmission Calibration—Model-Based Multi-Objective Optimization Via SIL
,”
7th International CTI Symposium and Exhibition
,
Innovative Automotive Transmission, Hybrid & Electric Drives, Rochester, MI,
May 13–16.
5.
Ranogajec
,
V.
,
Čorić
,
M.
,
Deur
,
J.
, and
Ivanović
,
V.
,
2018
, “
Multi-Objective Parameter Optimization of Automatic Transmission Shift Control Profiles
,”
SAE
Paper No. 2018-01-1164.10.4271/2018-01-1164
6.
Gao
,
B.
,
Chen
,
H.
, and
Sanada
,
K.
,
2008
, “
Two-Degree-of-Freedom Controller Design for Clutch Slip Control of Automatic Transmission
,”
SAE Int. J. Passeng. Cars—Mech. Syst.
,
1
(
1
), pp.
430
438
.10.4271/2008-01-0537
7.
Liu
,
F.
,
Chen
,
L.
,
Li
,
D.
, and
Yin
,
C.
,
2018
, “
Improved Clutch Slip Control for Automated Transmissions
,”
Proc. IMechE Part C: J. Mech. Eng. Sci.
,
232
(
18
), pp.
3181
3199
.10.1177/0954406217734578
8.
Cvok
,
I.
,
Deur
,
J.
,
Ivanovic
,
V.
,
Zhang
,
Y.
, and
Fujii
,
Y.
,
2020
, “
An LQR Approach of Automatic Transmission Upshift Control Including Use of Off-Going Clutch Within Inertia Phase
,”
SAE
Paper No. 2020-01-0970.10.4271/2020-01-0970
9.
Liu
,
Q.
,
Guo
,
L.
,
Gao
,
B.
,
Ye
,
K.
,
Chen
,
H.
, and
Guo
,
H.
,
2020
, “
Coordinate Receding Horizon Control for the Power-Shift Process of Multispeed Electric Vehicles
,”
IEEE Trans. Veh. Tech.
,
69
(
1
), pp.
1055
1059
.10.1109/TVT.2019.2949469
10.
Jacobson
,
B.
,
2001
, “
Outline of a New Control Concept for Power Shifting of Fixed Step Ratio Automotive Transmission
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
215
(
5
), pp.
613
–6
24
.10.1243/0954407011528202
11.
Ranogajec
,
V.
,
Deur
,
J.
, and
Coric
,
M.
,
2016
, “
Bond Graph Analysis of Automatic Transmission Shifts Including Potential of Extra Clutch Control
,”
SAE Int. J. Eng.
,
9
(
3
), pp.
1929
1945
.10.4271/2016-01-1146
12.
Čorić
,
M.
,
Ranogajec
,
V.
,
Deur
,
J.
,
Ivanović
,
V.
, and
Tseng
,
H. E.
,
2017
, “
Optimization of Shift Control Trajectories for Step Gear Automatic Transmission
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
6
), p.
061005
.10.1115/1.4035403
13.
Zhang
,
Y.
,
Haria
,
H.
,
Hippalgaonkar
,
R.
,
Pietron
,
G.
, and
Yuji
,
F.
,
2018
, “
Automatic Transmission Shift Control for Canceling Inertia Torque
,”
SAE
Paper No. 2018-01-1167.10.4271/2018-01-1167
14.
Goetz
,
M.
,
Levesley
,
M. C.
, and
Crolla
,
D. A.
,
2005
, “
Dynamics and Control of Gearshifts on Twin-Clutch Transmissions
,”
Proc. Inst. Mech. Eng. Part D: J. Automob. Eng.
,
219
(
8
), pp.
951
963
.10.1243/095440705X34720
15.
Hrovat
,
D.
, and
Tobler
,
W. E.
,
1991
, “
Bond Graph Modeling of Automotive Power Trains
,”
J. Franklin Inst.
,
328
(
5–6
), pp.
623
662
.10.1016/0016-0032(91)90046-6
16.
Deur
,
J.
,
Asgari
,
J.
,
Hrovat
,
D.
, and
Kovač
,
P.
,
2006
, “
Modeling and Analysis of Automatic Transmission Engagement Dynamics-Linear Case
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
2
), pp.
263
277
.10.1115/1.2192827
17.
Goleski
,
G. D.
, and
Baldwin
,
R. A.
,
2013
, “
Multi-Speed Transmission
,” U.S. Patent 8,545,362.https://patents.google.com/patent/US8545362B1/en
18.
Ivanovic
,
V.
, and
Tseng
,
H. E.
,
2017
, “
Bond Graph Based Approach for Modeling of Automatic Transmission Dynamics
,”
SAE Int. J. Engines
,
10
(
4
), pp.
1999
2014
.10.4271/2017-01-1143
19.
Ranogajec
,
V.
, and
Deur
,
J.
,
2017
, “
An Automated Model-Order Reduction Method for Automatic Transmission
,”
ASME J. Dyn. Syst. Meas. Control
,
139
(
7
), p.
071004
.10.1115/1.4035607
20.
Karnopp
,
D.
,
1985
, “
Computer Simulation of Stick-Slip Friction in Mechanical Dynamic Systems
,”
ASME J. Dyn. Syst. Meas. Control
,
107
(
1
), pp.
100
103
.10.1115/1.3140698
21.
Xu
,
Y.
,
Fujii
,
Y.
,
Dai
,
E.
,
McCallum
,
J.
,
Pietron
,
G.
,
Wu
,
G.
, and
Jiang
,
H.
,
2017
, “
Piecewise 1st Order Hydraulics Actuator Model for Transient Transmission Simulations
,”
SAE
Paper No. 2017-01-1140.10.4271/2017-01-1140
22.
Deur
,
J.
,
Petric
,
J.
,
Asgari
,
J.
, and
Hrovat
,
D.
,
2005
, “
Modeling of Wet Clutch Engagement Including a Thorough Experimental Validation
,”
SAE
Paper No. 2005-01-0877.10.4271/2005-01-0877
23.
Deur
,
J.
, and
Ivanovic
,
V.
,
2014
, “
Clutch Actuation
,”
Encyclopedia of Automotive Engineering
,
Wiley
,
Hoboken, NJ
.
24.
Esteco
, 2021, “
ModeFrontier
,” Esteco SpA, Trieste, Italy, accessed Jan. 28, 2021, https://www.esteco.com/modefrontier
25.
Zitlzer
,
E.
, and
Thiele
,
L.
,
1998
, “
Multiobjective Optimization Using Evolutionary Algorithms—A Comparative Case Study
,”
International Conference on Parallel Problem Solving From Nature
, Vol.
1498
,
Springer, Amsterdam, The Netherlands
, Sept. 27–30, pp.
292
301
.10.1007/BFb0056872
26.
Ranogajec
,
V.
, and
Deur
,
J.
,
2018
, “
Bond Graph Analysis of Automatic Transmission Double-Transition Shift Dynamics
,” International Conference on Bond Graph Modeling (
ICBGM 2018
),
Bordeaux
,
France
, July 9–12, p.
11
.https://www.researchgate.net/publication/327764403_Bond_Graph_Analysis_of_Automatic_Transmission_Double-Transition_Shift_Dynamics
27.
Ranogajec
,
V.
, and
Deur
,
J.
,
2018
, “
Analysis of Influence of Inertia Coupling on Automatic Transmission Shift Dynamics
,”
Proceedings of the 4th International Conference on Powertrain Modelling and Control, Testing, Mapping and Calibration
, Sept. 10–11,
Loughborough, UK
, p.
21
.https://www.researchgate.net/publication/327764716_Analysis_of_Influence_of_Inertia_Coupling_on_Automatic_Transmission_Shift_Dynamics
You do not currently have access to this content.