Abstract

Riccati equation-based control approaches such as linear-quadratic regulator (LQR) and time-varying LQR (TVLQR) are among the most common methods for stabilizing linear and nonlinear systems, especially in the context of optimal control. However, model inaccuracies may degrade the performance of closed-loop systems under such controllers. To mitigate this issue, this paper extends and encompasses Riccati-equation based controllers through the development of a robust stabilizing control methodology for uncertain nonlinear systems with modeling errors. We begin by linearizing the nonlinear system around a nominal trajectory to obtain a time-varying linear system with uncertainty in the system matrix. We propose a modified version of the continuous differential Riccati equation (MCDRE), whose solution is updated based upon the estimates of model uncertainty. An optimal least squares (OLS) algorithm is presented to identify this uncertainty and inform the MCDRE to update the control gains. The unification of MCDRE and OLS yields a robust time-varying Riccati-based (RTVR) controller that stabilizes uncertain nonlinear systems without the knowledge of the structure of the system's uncertainty a priori. The convergence of the system states is formally proven using a Lyapunov argument. Simulations and comparisons to the baseline backward-in-time Riccati-based controller on two real-world examples verify the benefits of our proposed control method.

References

1.
Richardson
,
T.
, and
Kwong
,
R.
,
1986
, “
On Positive Definite Solutions to the Algebraic Riccati Equation
,”
Syst. Control Lett.
,
7
(
2
), pp.
99
104
.10.1016/0167-6911(86)90014-9
2.
Hench
,
J. J.
,
He
,
C.
,
Kucera
,
V.
, and
Mehrmann
,
V.
,
1998
, “
Dampening Controllers Via a Riccati Equation Approach
,”
IEEE Trans. Autom. Control
,
43
(
9
), pp.
1280
1284
.10.1109/9.718617
3.
Wang
,
W.-J.
, and
Cheng
,
C.-F.
,
1992
, “
Stabilising Controller and Observer Synthesis for Uncertain Large-Scale Systems by the Riccati Equation Approach
,”
IEEE Proc. D Control Theory Appl.
,
139
(
1
), pp.
72
78
.10.1049/ip-d.1992.0011
4.
Leden
,
B.
,
1976
, “
Dead-Beat Control and the Riccati Equation
,”
IEEE Trans. Autom. Control
,
21
(
5
), pp.
791
792
.10.1109/TAC.1976.1101318
5.
Pandolfi
,
L.
,
2018
, “
The Quadratic Regulator Problem and the Riccati Equation for a Process Governed by a Linear Volterra Integrodifferential Equations
,”
IEEE Trans. Autom. Control
,
63
(
5
), pp.
1517
1522
.10.1109/TAC.2017.2753462
6.
Tedrake
,
R.
,
Manchester
,
I. R.
,
Tobenkin
,
M.
, and
Roberts
,
J. W.
,
2010
, “
LQR-Trees: Feedback Motion Planning Via Sums-of-Squares Verification
,”
Int. J. Rob. Res.
,
29
(
8
), pp.
1038
1052
.10.1177/0278364910369189
7.
Farzan
,
S.
,
Hu
,
A.
,
Davies
,
E.
, and
Rogers
,
J.
,
2019
, “
Feedback Motion Planning and Control of Brachiating Robots Traversing Flexible Cables
,” American Control Conference (
ACC
), Philadelphia, PA, July 10–12, pp.
1323
1329
.10.23919/ACC.2019.8814894
8.
Song
,
X.
, and
Yan
,
X.
,
2014
, “
Linear Quadratic Gaussian Control for Linear Time-Delay Systems
,”
IET Control Theory Appl.
,
8
(
6
), pp.
375
383
.10.1049/iet-cta.2013.0400
9.
Li
,
D.
,
Kar
,
S.
,
Moura
,
J. M. F.
,
Poor
,
H. V.
, and
Cui
,
S.
,
2015
, “
Distributed Kalman Filtering Over Massive Data Sets: Analysis Through Large Deviations of Random Riccati Equations
,”
IEEE Trans. Inf. Theory
,
61
(
3
), pp.
1351
1372
.10.1109/TIT.2015.2389221
10.
Nikoukhah
,
R.
,
Willsky
,
A. S.
, and
Levy
,
B. C.
,
1992
, “
Kalman Filtering and Riccati Equations for Descriptor Systems
,”
IEEE Trans. Autom. Control
,
37
(
9
), pp.
1325
1342
.10.1109/9.159570
11.
Cheng
,
X.
,
Liu
,
H.
,
Zeng
,
Z.
, and
Lu
,
W.
,
2022
, “
Saturated Output Feedback Control for Robot Manipulators With Joints of Arbitrary Flexibility
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
8
), p.
081004
.10.1115/1.4054582
12.
Li
,
L.
, and
Paganini
,
F.
,
2006
, “
LMI Relaxation to Riccati Equations in Structured H2 Control
,”
American Control Conference
, Minneapolis, MN, June 14–16, pp.
644
649
.10.1109/ACC.2006.1655429
13.
Rigatos
,
G.
,
Siano
,
P.
,
Melkikh
,
A.
, and
Zervos
,
N.
,
2018
, “
A Nonlinear H-Infinity Control Approach to Stabilization of Distributed Synchronous Generators
,”
IEEE Syst. J.
,
12
(
3
), pp.
2654
2663
.10.1109/JSYST.2017.2688422
14.
Kosmidou
,
O.
,
2007
, “
Generalized Riccati Equations Associated With Guaranteed Cost Control: An Overview of Solutions and Features
,”
Appl. Math. Comput.
,
191
(
2
), pp.
511
520
.10.1016/j.amc.2007.02.157
15.
Petersen
,
I. R.
,
1985
, “
A Riccati Equation Approach to the Design of Stabilizing Controllers and Observers for a Class of Uncertain Linear Systems
,”
IEEE Trans. Autom. Control
,
30
(
9
), pp.
904
907
.10.1109/TAC.1985.1104085
16.
Cheng
,
C.-F.
,
1998
, “
Output Feedback Stabilization for Uncertain Systems: Constrained Riccati Approach
,”
IEEE Trans. Autom. Control
,
43
(
1
), pp.
81
84
.10.1109/9.654890
17.
Ni
,
M.-L.
, and
Wu
,
H.-X.
,
1993
, “
A Riccati Equation Approach to the Design of Linear Robust Controllers
,”
Automatica
,
29
(
6
), pp.
1603
1605
.10.1016/0005-1098(93)90029-S
18.
Petersen
,
I. R.
, and
Hollot
,
C. V.
,
1986
, “
A Riccati Equation Approach to the Stabilization of Uncertain Linear Systems
,”
Automatica
,
22
(
4
), pp.
397
411
.10.1016/0005-1098(86)90045-2
19.
Petersen
,
I. R.
,
1987
, “
A Stabilization Algorithm for a Class of Uncertain Linear Systems
,”
Syst. Control Lett.
,
8
(
4
), pp.
351
357
.10.1016/0167-6911(87)90102-2
20.
Schmitendorf
,
W. E.
,
1988
, “
Designing Stabilizing Controllers for Uncertain Systems Using the Riccati Equation Approach
,”
IEEE Trans. Autom. Control
,
33
(
4
), pp.
376
379
.10.1109/9.192193
21.
Dolphus
,
R. M.
, and
Schmitendorf
,
W. E.
,
1990
, “
A Non-Iterative Riccati Approach to Robust Control Design
,”
American Control Conference
, San Diego, CA, May 23–25, pp.
916
918
.10.23919/ACC.1990.4790865
22.
Leith
,
D. J.
, and
Leithead
,
W. E.
,
2000
, “
Survey of Gain-Scheduling Analysis and Design
,”
Int. J. Control
,
73
(
11
), pp.
1001
1025
.10.1080/002071700411304
23.
Rotondo
,
D.
,
Nejjari
,
F.
, and
Puig
,
V.
,
2014
, “
Robust State-Feedback Control of Uncertain LPV Systems: An LMI-Based Approach
,”
J. Franklin Inst.
,
351
(
5
), pp.
2781
2803
.10.1016/j.jfranklin.2014.01.018
24.
Apkarian
,
P.
, and
Adams
,
R. J.
,
2000
,
Advanced Gain-Scheduling Techniques for Uncertain Systems
,
SIAM
,
Philadelphia, PA
, pp.
209
228
.
25.
Wu
,
F.
,
Yang
,
X. H.
,
Packard
,
A.
, and
Becker
,
G.
,
1996
, “
Induced L2-Norm Control for LPV Systems With Bounded Parameter Variation Rates
,”
Int. J. Robust Nonlinear Control
,
6
(
9–10
), pp.
983
998
.10.1002/(SICI)1099-1239(199611)6:9/10<983::AID-RNC263>3.0.CO;2-C
26.
Reist
,
P.
,
Preiswerk
,
P.
, and
Tedrake
,
R.
,
2016
, “
Feedback-Motion-Planning With Simulation-Based LQR-Trees
,”
Int. J. Rob. Res.
,
35
(
11
), pp.
1393
1416
.10.1177/0278364916647192
27.
Farzan
,
S.
,
Hu
,
A.
,
Bick
,
M.
, and
Rogers
,
J.
,
2020
, “
Robust Control Synthesis and Verification for Wire-Borne Underactuated Brachiating Robots Using Sum-of-Squares Optimization
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
, Las Vegas, NV, Oct. 25–29, pp.
7744
7751
.
28.
Zhang
,
W.
,
Teng
,
Y.
,
Wei
,
S.
,
Xiong
,
H.
, and
Ren
,
H.
,
2018
, “
The Robust H-Infinity Control of UUV With Riccati Equation Solution Interpolation
,”
Ocean Eng.
,
156
, pp.
252
262
.10.1016/j.oceaneng.2018.02.004
29.
Zou
,
J.
, and
Gupta
,
Y. P.
,
2000
, “
Robust Stabilizing Solution of the Riccati Difference Equation
,”
Eur. J. Control
,
6
(
4
), pp.
384
391
.10.1016/S0947-3580(00)71099-5
30.
Petersen
,
I. R.
,
2017
, “
A Survey of Riccati Equation Results in Negative Imaginary Systems Theory and Quantum Control Theory
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
9561
9566
.10.1016/j.ifacol.2017.08.1657
31.
Xie
,
L.
, and
Petersen
,
I. R.
,
2008
, “
Perfect Regulation With Cheap Control for Uncertain Linear Systems: A Riccati Equation Approach
,”
IET Control Theory Appl.
,
2
(
9
), pp.
782
794
.10.1049/iet-cta:20070068
32.
Li
,
Y.
,
Karimi
,
H. R.
,
Zhang
,
Q.
,
Zhao
,
D.
, and
Li
,
Y.
,
2018
, “
Fault Detection for Linear Discrete Time-Varying Systems Subject to Random Sensor Delay: A Riccati Equation Approach
,”
IEEE Trans. Circuits Syst. I Regular Papers
,
65
(
5
), pp.
1707
1716
.10.1109/TCSI.2017.2763625
33.
Weiss
,
A.
,
Kolmanovsky
,
I.
, and
Bernstein
,
D. S.
,
2012
, “
Forward-Integration Riccati-Based Output-Feedback Control of Linear Time-Varying Systems
,”
American Control Conference (ACC)
, Montreal, QC, Canada, June 27–29, pp.
6708
6714
.
34.
Prach
,
A.
,
Tekinalp
,
O.
, and
Bernstein
,
D. S.
,
2014
, “
A Numerical Comparison of Frozen-Time and Forward-Propagating Riccati Equations for Stabilization of Periodically Time-Varying Systems
,”
American Control Conference
, Portland, OR, June 4–6, pp.
5633
5638
.
35.
Basu
,
B.
, and
Staino
,
A.
,
2016
, “
Control of a Linear Time-Varying System With a Forward Riccati Formulation in Wavelet Domain
,”
ASME J. Dyn. Syst., Meas., Control
,
138
(
10
), p.
104502
.10.1115/1.4033839
36.
Kwakernaak
,
H.
, and
Sivan
,
R.
,
1972
,
Linear Optimal Control Systems
,
Wiley
,
New York
.
37.
Nguyen
,
T.
, and
Gajic
,
Z.
,
2010
, “
Solving the Matrix Differential Riccati Equation: A Lyapunov Equation Approach
,”
IEEE Trans. Autom. Control
,
55
(
1
), pp.
191
194
.10.1109/TAC.2009.2033841
38.
Chowdhary
,
G. V.
, and
Johnson
,
E. N.
,
2011
, “
Theory and Flight-Test Validation of a Concurrent-Learning Adaptive Controller
,”
J. Guid., Control, Dyn.
,
34
(
2
), pp.
592
607
.10.2514/1.46866
39.
Azimi
,
V.
, and
Hutchinson
,
S.
,
2021
, “
Exponential Control Lyapunov-Barrier Function Using a Filtering-Based Concurrent Learning Adaptive Approach
,”
IEEE Trans. Autom. Control
, pp.
1
8
.10.1109/TAC.2021.3120622
40.
Gelb
,
A.
,
1974
,
Applied Optimal Estimation
,
MIT Press
,
Cambridge, MA
.
41.
Simon
,
D.
,
2006
,
Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches
,
Wiley
,
Hoboken, NJ
.
42.
Khalil
,
H. K.
,
2002
,
Nonlinear Systems
, 3rd ed.,
Prentice Hall
,
Upper Saddle River, NJ
.
43.
Rugh
,
W.
,
1996
,
Linear System Theory
,
Prentice Hall
,
Englewood Cliffs, NJ
.
44.
Betts
,
J.
,
2010
,
Practical Methods for Optimal Control and Estimation Using Nonlinear Programming
, 2nd ed.,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
45.
Jabbari
,
F.
, and
Schmitendorf
,
W. E.
,
1989
, “
A Non-Iterative Method for Design of Linear Robust Controllers
,”
Proceedings of the 28th IEEE Conference on Decision and Control
, Vol.
2
, Tampa, FL, Dec. 13–15, pp.
1690
1692
.
46.
Schmitendorf
,
W. E.
,
1987
, “
Design Methodology for Robust Stabilizing Controllers
,”
J. Guid., Control, Dyn.
,
10
(
3
), pp.
250
254
.10.2514/3.20210
47.
Sobel
,
K. M.
, and
Shapiro
,
E. Y.
,
1985
, “
A Design Methodology for Pitch Pointing Flight Control Systems
,”
J. Guid., Control, Dyn.
,
8
(
2
), pp.
181
187
.10.2514/3.19957
You do not currently have access to this content.