Abstract

Connected and automated vehicles (CAVs), particularly those with a hybrid electric powertrain, have the potential to significantly improve vehicle energy savings in real-world driving conditions. In particular, the ecodriving problem seeks to design optimal speed and power usage profiles based on available information from connectivity and advanced mapping features to minimize the fuel consumption over an itinerary. This paper presents a hierarchical multilayer model predictive control (MPC) approach for improving the fuel economy of a 48 V mild-hybrid powertrain in a connected vehicle environment. Approximate dynamic programing (DP) is used to solve the receding horizon optimal control problem, whose terminal cost is approximated with the base policy obtained from the long-term optimization. The controller was tested virtually (with deterministic and Monte Carlo simulation) across multiple real-world routes, demonstrating energy savings of more than 20%. The controller was then deployed on a test vehicle equipped with a rapid prototyping embedded controller. In-vehicle testing confirm the energy savings obtained in simulation and demonstrate the real-time ability of the controller.

References

1.
Guanetti
,
J.
,
Kim
,
Y.
, and
Borrelli
,
F.
,
2018
, “
Control of Connected and Automated Vehicles: State of the Art and Future Challenges
,”
Annu. Rev. Control
,
45
, pp.
18
40
.10.1016/j.arcontrol.2018.04.011
2.
Gupta
,
S.
,
Deshpande
,
S. R.
,
Tufano
,
D.
,
Canova
,
M.
,
Rizzoni
,
G.
,
Aggoune
,
K.
,
Olin
,
P.
, and
Kirwan
,
J.
,
2020
, “
Estimation of Fuel Economy on Real-World Routes for Next-Generation Connected and Automated Hybrid Powertrains
,”
SAE
Paper No. 2020-01-0593.10.4271/2020-01-0593
3.
Dong
,
S.
,
Gao
,
B.
,
Chen
,
H.
,
Huang
,
Y.
, and
Liu
,
Q.
,
2022
, “
Real-Time Velocity Optimization for Energy-Efficient Control of Connected and Automated Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
1
), p.
011102
.10.1115/1.4052765
4.
Xu
,
S.
, and
Peng
,
H.
,
2018
, “
Design and Comparison of Fuel-Saving Speed Planning Algorithms for Automated Vehicles
,”
IEEE Access
,
6
, pp.
9070
9080
.10.1109/ACCESS.2018.2805883
5.
Guzzella
,
L.
, and
Sciarretta
,
A.
,
2007
,
Vehicle Propulsion Systems
, Vol.
1
,
Springer
, Berlin.
6.
Alam
,
M. S.
, and
McNabola
,
A.
,
2014
, “
A Critical Review and Assessment of Eco-Driving Policy & Technology: Benefits & Limitations
,”
Transp. Policy
,
35
, pp.
42
49
.10.1016/j.tranpol.2014.05.016
7.
Sciarretta
,
A.
,
De Nunzio
,
G.
, and
Ojeda
,
L. L.
,
2015
, “
Optimal Ecodriving Control: Energy-Efficient Driving of Road Vehicles as an Optimal Control Problem
,”
IEEE Control Syst. Mag.
,
35
(
5
), pp.
71
90
.10.1109/MCS.2015.2449688
8.
Jin
,
Q.
,
Wu
,
G.
,
Boriboonsomsin
,
K.
, and
Barth
,
M. J.
,
2016
, “
Power-Based Optimal Longitudinal Control for a Connected Eco-Driving System
,”
IEEE Trans. Intell. Transp. Syst.
,
17
(
10
), pp.
2900
2910
.10.1109/TITS.2016.2535439
9.
Ozatay
,
E.
,
Onori
,
S.
,
Wollaeger
,
J.
,
Ozguner
,
U.
,
Rizzoni
,
G.
,
Filev
,
D.
,
Michelini
,
J.
, and
Di Cairano
,
S.
,
2014
, “
Cloud-Based Velocity Profile Optimization for Everyday Driving: A Dynamic-Programming-Based Solution
,”
IEEE Trans. Intell. Transp. Syst.
,
15
(
6
), pp.
2491
2505
.10.1109/TITS.2014.2319812
10.
Han
,
J.
,
Vahidi
,
A.
, and
Sciarretta
,
A.
,
2019
, “
Fundamentals of Energy Efficient Driving for Combustion Engine and Electric Vehicles: An Optimal Control Perspective
,”
Automatica
,
103
, pp.
558
572
.10.1016/j.automatica.2019.02.031
11.
Mensing
,
F.
,
Trigui
,
R.
, and
Bideaux
,
E.
,
2012
, “
Vehicle Trajectory Optimization for Hybrid Vehicles Taking Into Account Battery State-of-Charge
,”
2012 IEEE Vehicle Power and Propulsion Conference
, Seoul, Korea,
IEEE
, pp.
950
955
.
12.
Guo
,
L.
,
Gao
,
B.
,
Gao
,
Y.
, and
Chen
,
H.
,
2017
, “
Optimal Energy Management for HEVs in Eco-Driving Applications Using Bi-Level MPC
,”
IEEE Trans. Intell. Transp. Syst.
,
18
(
8
), pp.
2153
2162
.10.1109/TITS.2016.2634019
13.
Amini
,
M. R.
,
Gong
,
X.
,
Feng
,
Y.
,
Wang
,
H.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2019
, “
Sequential Optimization of Speed, Thermal Load, and Power Split in Connected HEVs
,” 2019 American Control Conference (
ACC
), Philadelphia, PA,
July 10–12
, pp.
4614
4620
.10.23919/ACC.2019.8815158
14.
Hao
,
P.
,
Wu
,
G.
,
Boriboonsomsin
,
K.
, and
Barth
,
M. J.
,
2019
, “
Eco-Approach and Departure (EAD) Application for Actuated Signals in Real-World Traffic
,”
IEEE Trans. Intell. Transp. Syst.
,
20
(
1
), pp.
30
40
.10.1109/TITS.2018.2794509
15.
Ye
,
F.
,
Hao
,
P.
,
Qi
,
X.
,
Wu
,
G.
,
Boriboonsomsin
,
K.
, and
Barth
,
M. J.
,
2019
, “
Prediction-Based Eco-Approach and Departure at Signalized Intersections With Speed Forecasting on Preceding Vehicles
,”
IEEE Trans. Intell. Transp. Syst.
,
20
(
4
), pp.
1378
1389
.10.1109/TITS.2018.2856809
16.
Altan
,
O. D.
,
Wu
,
G.
,
Barth
,
M. J.
,
Boriboonsomsin
,
K.
, and
Stark
,
J. A.
,
2017
, “
Glidepath: Eco-Friendly Automated Approach and Departure at Signalized Intersections
,”
IEEE Trans. Intell. Veh.
,
2
(
4
), pp.
266
277
.10.1109/TIV.2017.2767289
17.
Sun
,
C.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S. J.
,
2018
, “
Optimal Eco-Driving Control of Connected and Autonomous Vehicles Through Signalized Intersections
,” IEEE Internet of Things J., 7(5), pp. 3759–3773
.
18.
Qin
,
S. J.
, and
Badgwell
,
T. A.
,
2003
, “
A Survey of Industrial Model Predictive Control Technology
,”
Control Eng. Pract.
,
11
(
7
), pp.
733
764
.10.1016/S0967-0661(02)00186-7
19.
Borrelli
,
F.
,
Bemporad
,
A.
, and
Morari
,
M.
,
2017
,
Predictive Control for Linear and Hybrid Systems
,
Cambridge University Press
, Cambridge, UK.
20.
Bellman
,
R.
,
1966
, “
Dynamic Programming
,”
Science
,
153
(
3731
), pp.
34
37
.10.1126/science.153.3731.34
21.
Lee
,
J. H.
, and
Wong
,
W.
,
2010
, “
Approximate Dynamic Programming Approach for Process Control
,”
J. Process Control
,
20
(
9
), pp.
1038
1048
.10.1016/j.jprocont.2010.06.007
22.
Yin
,
J.
,
Tang
,
T.
,
Yang
,
L.
,
Gao
,
Z.
, and
Ran
,
B.
,
2016
, “
Energy-Efficient Metro Train Rescheduling With Uncertain Time-Variant Passenger Demands: An Approximate Dynamic Programming Approach
,”
Transp. Res. Part B: Methodol.
,
91
, pp.
178
210
.10.1016/j.trb.2016.05.009
23.
Olin
,
P.
,
Aggoune
,
K.
,
Tang
,
L.
,
Confer
,
K.
,
Kirwan
,
J.
,
Deshpande
,
S. R.
,
Gupta
,
S.
,
Tulpule
,
P.
,
Canova
,
M.
, and
Rizzoni
,
G.
,
2019
, “
Reducing Fuel Consumption by Using Information From Connected and Automated Vehicle Modules to Optimize Propulsion System Control
,”
SAE
Paper No. 2019-01-1213.10.4271/2019-01-1213
24.
Wilcutts
,
M.
,
Switkes
,
J.
,
Shost
,
M.
, and
Tripathi
,
A.
,
2013
, “
Design and Benefits of Dynamic Skip Fire Strategies for Cylinder Deactivated Engines
,”
SAE Int. J. Engines
,
6
(
1
), pp.
278
288
.10.4271/2013-01-0359
25.
Wilcutts
,
M.
,
Nagashima
,
M.
,
Eisazadeh-Far
,
K.
,
Younkins
,
M.
, and
Confer
,
K.
,
2018
, “
Electrified Dynamic Skip Fire (EDSF): Design and Benefits
,”
SAE
Paper No. 2018-01-0864.10.4271/2018-01-0864
26.
Zhu
,
Z.
,
Gupta
,
S.
,
Pivaro
,
N.
,
Deshpande
,
S. R.
, and
Canova
,
M.
,
2021
, “
A GPU Implementation of a Look-Ahead Optimal Controller for Eco-Driving Based on Dynamic Programming
,” 2021 European Control Conference (ECC), Delft, The Netherlands.
27.
Bertsekas
,
D. P.
,
1995
,
Dynamic Programming and Optimal Control
, Vol.
1
,
Athena Scientific
,
Belmont, MA
.
28.
Johannesson
,
L.
, and
Egardt
,
B.
,
2008
, “
Approximate Dynamic Programming Applied to Parallel Hybrid Powertrains
,”
IFAC Proc. Vol.
,
41
(
2
), pp.
3374
3379
.10.3182/20080706-5-KR-1001.00573
29.
Hellström
,
E.
,
Åslund
,
J.
, and
Nielsen
,
L.
,
2010
, “
Design of an Efficient Algorithm for Fuel-Optimal Look-Ahead Control
,”
Control Eng. Pract.
,
18
(
11
), pp.
1318
1327
.10.1016/j.conengprac.2009.12.008
30.
Bae
,
S.
,
Choi
,
Y.
,
Kim
,
Y.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S.
,
2019
, “
Real-Time Ecological Velocity Planning for Plug-In Hybrid Vehicles With Partial Communication to Traffic Lights
,” 2019 IEEE 58th Conference on Decision and Control (
CDC
), Nice, France,
Dec. 11–13
, pp.
1279
1285
.10.1109/CDC40024.2019.9030166
31.
Bertsekas
,
D. P.
, and
Tsitsiklis
,
J. N.
,
1996
,
Neuro-Dynamic Programming
,
Athena Scientific
, Belmont, MA.
32.
Melo
,
F. S.
,
Meyn
,
S. P.
, and
Ribeiro
,
M. I.
,
2008
, “
An Analysis of Reinforcement Learning With Function Approximation
,”
Proceedings of the 25th International Conference on Machine Learning
, Helsinki, Finland, pp.
664
671
.
33.
Bertsekas
,
D.
,
2005
, “
Rollout Algorithms for Constrained Dynamic Programming
,” Lab. for Information and Decision Systems, Report No. 2646.
34.
Sun
,
C.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S. J.
,
2020
, “
Optimal Eco-Driving Control of Connected and Autonomous Vehicles Through Signalized Intersections
,”
IEEE Internet Things J.
,
7
(
5
), pp.
3759
3773
.10.1109/JIOT.2020.2968120
35.
Larson
,
R. E.
,
Casti
,
J. L.
, and
Casti
,
J. L.
,
1978
,
Principles of Dynamic Programming
, Vol.
7
,
M. Dekker
,
New York
.
36.
Gupta
,
S.
,
Deshpande
,
S. R.
,
Tulpule
,
P.
,
Canova
,
M.
, and
Rizzoni
,
G.
,
2019
, “
An Enhanced Driver Model for Evaluating Fuel Economy on Real-World Routes
,”
IFAC-PapersOnLine
,
52
(
5
), pp.
574
579
.10.1016/j.ifacol.2019.09.091
37.
Coovert
,
D. A.
,
Heydinger
,
G. J.
,
Bixel
,
R. A.
,
Andreatta
,
D.
,
Guenther
,
D. A.
,
Sidhu
,
A. S.
, and
Mikesell
,
D. R.
,
2009
, “
Design and Operation of a Brake and Throttle Robot
,”
SAE Int. J. Passenger Cars - Mech. Syst.
,
2
(
1
), pp.
613
621
.10.4271/2009-01-0429
38.
Rajakumar Deshpande
,
S.
,
Gupta
,
S.
,
Kibalama
,
D.
,
Pivaro
,
N.
, and
Canova
,
M.
,
2020
, “
Benchmarking Fuel Economy of Connected and Automated Vehicles in Real World Driving Conditions Via Monte Carlo Simulation
,”
ASME
Paper No. DSCC2020-3250.10.1115/DSCC2020-3250
39.
Behrisch
,
M.
,
Bieker
,
L.
,
Erdmann
,
J.
, and
Krajzewicz
,
D.
,
2011
, “
SUMO—Simulation of Urban Mobility: An Overview
,”
Proceedings of SIMUL 2011, The Third International Conference on Advances in System Simulation
, Barcelona, Spain, Oct.
23
29
.
40.
Deshpande
,
S. R.
,
Gupta
,
S.
,
Kibalama
,
D.
,
Pivaro
,
N.
,
Canova
,
M.
,
Rizzoni
,
G.
,
Aggoune
,
K.
,
Olin
,
P.
, and
Kirwan
,
J.
,
2021
, “
In-Vehicle Test Results for Advanced Propulsion and Vehicle System Controls Using Connected and Automated Vehicle Information
,”
SAE
Paper No. 2021-01-0430.10.4271/2021-01-0430
You do not currently have access to this content.