Abstract

Recent advances in vehicle connectivity and automation technologies promote advanced control algorithms that co-optimize the longitudinal dynamics and powertrain operation of hybrid electric vehicles. Typically, a sequential optimization with the vehicle dynamics optimized followed by powertrain optimization is adopted to manage a number of complexities such as the inherent mixed-integer nature of the hybrid powertrain, the numerous state and control variables, the differing time scales of vehicle and powertrain subsystems, time-varying state constraints, and large horizon lengths. Instead, we solve the offline optimization problem in a centralize manner assuming exact knowledge of the lead vehicle's position over the entire trip by applying a discrete-time single shooting-based numerical approach, discrete mixed-integer shooting (DMIS), including a linearly increasing computational complexity to the problem horizon. In particular, the hierarchical problem structure is exploited to decompose the computationally intensive Hamiltonian minimization step into a set of low-dimensional optimizations. DMIS allows us to compute the direct fuel minimization problem including the vehicle and powertrain dynamics in a centralized manner to its full horizon while systematically tuning weighting factors that penalize passenger discomfort. For the first time, this study reveals that practically implemented sequential optimization exhibits similar fuel optimality as co-optimization when a certain level of passenger comfort is required.

References

1.
Paganelli
,
G.
,
Delprat
,
S.
,
Guerra
,
T.-M.
,
Rimaux
,
J.
, and
Santin
,
J.-J.
,
2002
, “
Equivalent Consumption Minimization Strategy for Parallel Hybrid Powertrains
,”
IEEE 55th Vehicular Technology Conference, VTC Spring Vehicular Technology Conference
, Vol.
4
, IEEE, Birmingham, AL, May 6-9, pp.
2076
2081
.10.1109/VTC.2002.1002989
2.
Serrao
,
L.
,
Onori
,
S.
, and
Rizzoni
,
G.
,
2009
, “
ECMS as a Realization of Pontryagin's Minimum Principle for HEV Control
,”
American Control Conference
,
IEEE
, St. Louis, MO, June 10-12, pp.
3964
3969
.10.1109/ACC.2009.5160628
3.
Liu
,
J.
, and
Peng
,
H.
,
2008
, “
Modeling and Control of a Power-Split Hybrid Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
16
(
6
), pp.
1242
1251
.10.1109/TCST.2008.919447
4.
Kim
,
N.
,
Cha
,
S.
, and
Peng
,
H.
,
2011
, “
Optimal Control of Hybrid Electric Vehicles Based on Pontryagin's Minimum Principle
,”
IEEE Trans. Control Syst. Technol.
,
19
(
5
), pp.
1279
1287
.
5.
Lin
,
C.-C.
,
Peng
,
H.
, and
Grizzle
,
J. W.
,
2004
, “
A Stochastic Control Strategy for Hybrid Electric Vehicles
,”
Proceedings of the American Control Conference
, Vol.
5
, Boston, MA, June 30-July 2, pp.
4710
4715
.10.23919/ACC.2004.1384056
6.
Dextreit
,
C.
,
Assadian
,
F.
,
Kolmanovsky
,
I.
,
Mahtani
,
J.
, and
Burnham
,
K.
,
2008
, “
Hybrid Electric Vehicle Energy Management Using Game Theory
,”
SAE
Paper No. 2008-01-1317.10.4271/2008-01-1317
7.
Borhan
,
H.
,
Vahidi
,
A.
,
Phillips
,
A. M.
,
Kuang
,
M. L.
,
Kolmanovsky
,
I. V.
, and
Di Cairano
,
S.
,
2012
, “
MPC-Based Energy Management of a Power-Split Hybrid Electric Vehicle
,”
IEEE Trans. Control Syst. Technol.
,
20
(
3
), pp.
593
603
.10.1109/TCST.2011.2134852
8.
Hu
,
Q.
,
Amini
,
M. R.
,
Wiese
,
A.
,
Buckland Seeds
,
J.
,
Kolmanovsky
,
I.
, and
Sun
,
J.
,
2022
, “
A Multi-Range Vehicle Speed Prediction With Application to Mpc-Based Integrated Power and Thermal Management of Connected Hybrid Electric Vehicles
,”
ASME J. Dyn. Syst., Meas., Control
,
144
(
1
), p. 011105.10.1115/1.4052819
9.
Bae
,
S.
,
Choi
,
Y.
,
Kim
,
Y.
,
Guanetti
,
J.
,
Borrelli
,
F.
, and
Moura
,
S.
,
2019
, “
Real-Time Ecological Velocity Planning for Plug-in Hybrid Vehicles With Partial Communication to Traffic Lights
,”
IEEE 58th Conference on Decision and Control (CDC)
,
IEEE
, pp.
1279
1285
.
10.
Maamria
,
D.
,
Gillet
,
K.
,
Colin
,
G.
,
Chamaillard
,
Y.
, and
Nouillant
,
C.
,
2018
, “
Computation of Eco-Driving Cycles for Hybrid Electric Vehicles: Comparative Analysis
,”
Control Eng. Pract.
,
71
, pp.
44
52
.10.1016/j.conengprac.2017.10.011
11.
Ojeda
,
L. L.
,
Han
,
J.
,
Sciarretta
,
A.
,
De Nunzio
,
G.
, and
Thibault
,
L.
,
2017
, “
A Real-Time Eco-Driving Strategy for Automated Electric Vehicles
,”
IEEE 56th Annual Conference on Decision and Control (CDC)
,
IEEE
, Melbourne, VIC, Australia, Dec. 12-15, pp.
2768
2774
.10.1109/CDC.2017.8264061
12.
Olin
,
P.
,
Aggoune
,
K.
,
Tang
,
L.
,
Confer
,
K.
,
Kirwan
,
J.
,
Deshpande
,
S. R.
,
Gupta
,
S.
,
Tulpule
,
P.
,
Canova
,
M.
, and
Rizzoni
,
G.
,
2019
, “
Reducing Fuel Consumption by Using Information From Connected and Automated Vehicle Modules to Optimize Propulsion System Control
,”
SAE
Paper No. 2019-01-1213.10.4271/2019-01-1213
13.
Li
,
G.
, and
Görges
,
D.
,
2019
, “
Ecological Adaptive Cruise Control and Energy Management Strategy for Hybrid Electric Vehicles Based on Heuristic Dynamic Programming
,”
IEEE Trans. Intell. Transport. Syst.
,
20
(
9
), pp.
3526
3535
.10.1109/TITS.2018.2877389
14.
Ozatay
,
E.
,
Ozguner
,
U.
, and
Filev
,
D.
,
2017
, “
Velocity Profile Optimization of on Road Vehicles: Pontryagin's Maximum Principle Based Approach
,”
Control Eng. Pract.
,
61
, pp.
244
254
.10.1016/j.conengprac.2016.09.006
15.
Borek
,
J.
,
Groelke
,
B.
,
Earnhardt
,
C.
, and
Vermillion
,
C.
,
2019
, “
Optimal Control of Heavy-Duty Trucks in Urban Environments Through Fused Model Predictive Control and Adaptive Cruise Control
,”
American Control Conference (ACC)
,
IEEE
, Philadelphia, PA, July 10-12, pp.
4602
4607
.10.23919/ACC.2019.8814703
16.
Zhang
,
S.
,
Luo
,
Y.
,
Li
,
K.
, and
Li
,
V.
,
2018
, “
Real-Time Energy-Efficient Control for Fully Electric Vehicles Based on an Explicit Model Predictive Control Method
,”
IEEE Trans. Veh. Technol.
,
67
(
6
), pp.
4693
4701
.10.1109/TVT.2018.2806400
17.
Heppeler
,
G.
,
Sonntag
,
M.
,
Wohlhaupter
,
U.
, and
Sawodny
,
O.
,
2017
, “
Predictive Planning of Optimal Velocity and State of Charge Trajectories for Hybrid Electric Vehicles
,”
Control Eng. Pract.
,
61
, pp.
229
243
.10.1016/j.conengprac.2016.07.003
18.
Asadi
,
B.
, and
Vahidi
,
A.
,
2011
, “
Predictive Cruise Control: Utilizing Upcoming Traffic Signal Information for Improving Fuel Economy and Reducing Trip Time
,”
IEEE Trans. Control Syst. Technol.
,
19
(
3
), pp.
707
714
.10.1109/TCST.2010.2047860
19.
Wan
,
N.
,
Vahidi
,
A.
, and
Luckow
,
A.
,
2016
, “
Optimal Speed Advisory for Connected Vehicles in Arterial Roads and the Impact on Mixed Traffic
,”
Transport. Res. Part C
,
69
, pp.
548
563
.10.1016/j.trc.2016.01.011
20.
Li
,
L.
,
Wang
,
X.
, and
Song
,
J.
,
2017
, “
Fuel Consumption Optimization for Smart Hybrid Electric Vehicle During a Car-Following Process
,”
Mech. Syst. Signal Process.
,
87
, pp.
17
29
.10.1016/j.ymssp.2016.03.002
21.
Zhao
,
J.
,
Hu
,
Y.
,
Muldoon
,
S.
, and
Chang
,
C.-F.
,
2019
, “
Inforich' Eco-Driving Control Strategy for Connected and Automated Vehicles
,”
American Control Conference (ACC)
,
IEEE
, pp.
4621
4627
.
22.
Chen
,
D.
,
Prakash
,
N.
,
Stefanopoulou
,
A. G.
,
Huang
,
M.
,
Kim
,
Y.
, and
Hotz
,
S. R.
,
2018
, “
Sequential Optimization of Velocity and Charge Depletion in a Plug-In Hybrid Electric Vehicle
,”
14th International Symposium on Advanced Vehicle Control
, Beijing, China, July 16-20.
23.
Nazari
,
S.
,
Prakash
,
N.
,
Siegel
,
J.
, and
Stefanopoulou
,
A.
,
2019
, “
On the Effectiveness of Hybridization Paired With Eco-Driving
,”
American Control Conference (ACC)
,
IEEE
, Philadelphia, PA, July 10-12, pp.
4635
4640
.10.23919/ACC.2019.8814975
24.
Ngo
,
D. V.
,
Hofman
,
T.
,
Steinbuch
,
M.
, and
Serrarens
,
A. F.
,
2010
, “
An Optimal Control-Based Algorithm for Hybrid Electric Vehicle Using Preview Route Information
,”
Proceedings of the American Control Conference
,
IEEE
, Baltimore, MD, June 30-July 2, pp.
5818
5823
.10.1109/ACC.2010.5530491
25.
Zhu
,
J.
,
Ngo
,
C.
, and
Sciarretta
,
A.
,
2019
, “
Real-Time Optimal Eco-Driving for Hybrid-Electric Vehicles
,”
IFAC-PapersOnLine
,
52
(
5
), pp.
562
567
.10.1016/j.ifacol.2019.09.089
26.
Uebel
,
S.
,
Murgovski
,
N.
,
Bäker
,
B.
, and
Sjöberg
,
J.
,
2019
, “
A Two-Level MPC for Energy Management Including Velocity Control of Hybrid Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
68
(
6
), pp.
5494
5505
.10.1109/TVT.2019.2910728
27.
Chen
,
D.
,
Kim
,
Y.
,
Huang
,
M.
, and
Stefanopoulou
,
A.
,
2020
, “
An Iterative and Hierarchical Approach to Co-Optimizing the Velocity Profile and Power-Split of Plug-in Hybrid Electric Vehicles
,”
American Control Conference (ACC)
, Denver, CO, July 1-3, pp.
3059
3064
.10.23919/ACC45564.2020.9147804
28.
Sager
,
S.
,
2005
,
Numerical Methods for Mixed-Integer Optimal Control Problems
,
Der Andere Verlag
,
Tönning, Germany
.
29.
Chen
,
D.
,
Huang
,
M.
, and
Stefanopoulou
,
A. G.
,
2020
, “
Discrete Mixed-Integer Shooting (DMIS): Algorithm and Application to PHEV Energy Management Accounting for Fuel Cranking
,” submitted to
IEEE Transactions on Control System Technology
(under review).
30.
Chen
,
D.
,
Kim
,
Y.
, and
Hyeon
,
E.
,
2021
, “
Receding-Horizon Safe co-Optimization of the Velocity and Power-Split of Plug-in Hybrid Electric Vehicles With Imperfect Prediction
,”
American Control Conference (ACC)
,
IEEE
, New Orleans, LA, May 25-28, pp.
1848
1854
.10.23919/ACC50511.2021.9482642
31.
Chen
,
D.
,
Huang
,
M.
,
Stefanopoulou
,
A.
, and
Kim
,
Y.
,
2021
, “
A Receding-Horizon Framework for Co-Optimizing the Velocity and Power-Split of Automated Plug-in Hybrid Electric Vehicles
,”
ASME Lett. Dyn. Syst. Control
,
1
(
4
), p.
041006
.10.1115/1.4050191
32.
Onori
,
S.
,
Serrao
,
L.
, and
Rizzoni
,
G.
,
2016
,
Hybrid Electric Vehicles: Energy Management Strategies
, Vol.
13
,
Springer
, Berlin.
33.
Huang
,
M.
,
Zhang
,
S.
, and
Shibaike
,
Y.
,
2019
, “
Real-Time Long Horizon Model Predictive Control of a Plug-in Hybrid Vehicle Power-Split Utilizing Trip Preview
,”
SAE
Paper No. 2019-01-2341.10.4271/2019-01-2341
34.
Chen
,
D.
,
2021
, “
Fuel Optimal Control Algorithms for Connected and Automated Plug-In Hybrid Vehicles
,” Ph.D. thesis,
University of Michigan
, Ann Arbor, MI.
35.
Chen
,
D.
,
2021
, “
Fuel Optimal Control Algorithms for Connected and Automated Plug-In Hybrid Vehicles
,” Ph.D. thesis.
36.
Alamir
,
M.
, and
Attia
,
S.-A.
,
2004
, “
On Solving Optimal Control Problems for Switched Hybrid Nonlinear Systems by Strong Variations Algorithms
,”
Proceedings of Sixth IFAC Symposium on Nonlinear Control Systems
, pp.
558
563
.
37.
Hubbard
,
G. A.
, and
Youcef-Toumi
,
K.
,
1997
, “
System Level Control of a Hybrid-Electric Vehicle Drivetrain
,”
Proceedings of the American Control Conference
, Vol.
1
,
IEEE
, Albuquerque, NM, June 6, pp.
641
645
.10.1109/ACC.1997.611879
You do not currently have access to this content.